(1) Consider the one-period trinomial model with
 - asset 1 = risk-free, interest rate \(r > 0 \)
 - asset 2 = risky, initial unit price \(s_0 \), final unit prices \(s_{0d}, s_0, s_{0u} \)

with \(d < 1 < u \). Assume that \(d < e^{rT} < u \) so the market admits no arbitrage. You want to buy a call option on the risky asset with strike price \(K \). What are the largest and smallest prices you should consider paying for it, based on considerations of arbitrage?

(2) Consider a forward contract on a non-dividend-paying stock, with strike price \(K \) and maturity \(T \). Its value at time 0 is \(s_0 - Ke^{-rT} \), where \(r \) is the risk-free rate (assumed constant) and \(s_0 \) is the stock price at time 0. We explained this in Section 1, using the standard “cash-and-carry” argument. Explain how that argument can be formalized using a one-period model with two assets and \(M \) states.

(3) Consider the following one-period market with 3 assets and 4 states:
 - Asset 1 is a riskless bond, paying no interest.
 - Asset 2 is a stock with initial price 1 dollar/share; its possible final prices are \(d \) and \(u \), with \(d < 1 < u \).
 - Asset 3 is another stock with initial price 1 dollar/share and possible final prices \(d \) and \(u \) (same \(d \) and \(u \)).
 - To keep the arithmetic simple, let’s assume that \(u = 1 + \epsilon \) and \(d = 1 - \epsilon \) for some \(\epsilon > 0 \). To avoid confusion, let’s number the states: 1 = both stocks go up; 2 = asset 2 goes up, asset 3 goes down; 3 = asset 2 goes down, asset 3 goes up; 4 = both stocks go down.

(a) What is the associated cash-flow matrix \(D_{1\alpha} \)?

(b) Find all the risk-neutral probabilities.

(c) Consider the contingent claim with payoff \(f = (f_1, f_2, f_3, f_4) \). What are the smallest and largest prices for \(f \) permitted by arbitrage considerations? (Let’s call these \(V_{-}(f) \) and \(V_{+}(f) \)).

(d) Does \(f_\alpha \geq 0 \) for all \(\alpha \) and \(V_{-}(f) = 0 \) imply \(f = 0? \) Explain.

(e) Which \(f \)'s are replicatable?

(4) It is said that a London betmaker gave the following odds on the 1996 US Presidential election: 6-1 in favor of Clinton, 7-2 against Dole, 50-1 against Perot. Interpret this to mean that the betmaker was willing to take only three types of bets – that Clinton would win, that Dole would win, and that Perot would win – and
• 6 dollars bet on Clinton would return 7 if he won, 0 if not;
• 2 dollars bet on Dole would return 9 if he won, 0 if not;
• 1 dollar bet on Perot would return 51 if he won, 0 if not.

Interpret this as a one-period market with three assets: a 1-dollar bet on Clinton, a 1-dollar bet on Dole, and a 1-dollar bet on Perot. What are the associated risk-neutral probabilities? How much was the betmaker taking of every dollar bet? Explain. (This problem is adapted from Marco Avellaneda’s notes.)