
Continuous Time Finance Notes, Spring 2004 – Section 6, March 3, 2004
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-
tion with the NYU course Continuous Time Finance.

The first bit of this section addresses the pricing of swaptions – something we didn’t get
around to before. The rest is a supplement to Hull’s discussion of the trinomial tree version
of Hull-White.

*****************

Pricing swaptions using Hull-White. We explained in Section 4 how a caplet is equiv-
alent to a put option on a zero coupon bond. A similar argument shows that a floorlet is
equivalent to a call option on a zero coupon bond. So we can easily derive formulas for the
prices of caplets and floorlets using Black’s formula (problem 1 of HW 3 covers the case
of a caplet). Caps and floors are simply portfolios of caplets and floorlets, so we’ve priced
them too. But what about swaptions?

The first observation is general: the task of pricing a swaption is identical to that of pricing
a suitable option on a coupon bond. To be specific, let’s suppose the underlying swap
exchanges the floating rate for fixed rate k, the interest payments being at times T1, . . . , TN

with a return of principal at TN . (The holder of the swap receives the fixed rate and pays
the floating rate.) Consider the associated swaption, which gives the holder the right to
enter into this swap at time T0. For simplicity assume the time intervals Tj − Tj−1 are all
the same length ∆t. The value of the underlying swap at time T0 is then

P (T0, TN ) + k∆t
N∑

j=1

P (T0, Tj) − 1

times the notional principal. Indeed, the first term is the value at time T0 of the principal
payment at TN ; the second term is the value at time T0 of the coupon payments; and the
third term is the value at time T0 of a (short position in a) bond which pays the floating
rate. Therefore the payoff of the swaption at time T0 is

(P (T0, TN ) + k∆t
N∑

j=1

P (T0, Tj) − 1)+ .

This is identical to the payoff of a call option on a coupon bond (with interest rate k and
payments at times Tj) with strike 1.

The next observation is special to Hull-White (well, it’s a bit more general than that:
the argument works for any one-factor short-rate model). We claim that a call or put
on a coupon bond is equivalent to a suitable portfolio of calls or puts options on zero
coupon bonds. To explain why, let’s focus on the case of a call. Recall that P (t, T ) =
A(t, T ) exp[−B(t, T )r(t)]. The key point is that P (t, T ) is really a function of three variables:
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t, T , and r(t), and it is monotone in the third argument r(t). So there is a unique “critical
value” r∗ for the short rate at time T0 such that an option with payoff

X =


P (T0, TN ) + k∆t

N∑
j=1

P (T0, Tj) − K




+

is in the money (at time T0) precisely if r(T0) < r∗. Moreover we can write X as a sum of
call payoffs on zero-coupon bonds,

X =
(
P (T0, TN ) − A(T0, TN )e−B(T0,TN )r∗

)
+

+ k∆t
N∑

j=1

(
P (T0, Tj) − A(T0, Tj)e−B(T0,Tj)r∗

)
+

since each term is in the money at time T0 exactly if r(T0) < r∗. Option prices are additive
– the value of a portfolio is the sum of the values of its component instruments – and we
know how to price options on zero-coupon bonds. So we also know how to price swaptions.

*****************

The trinomial tree approximation to an additive random walk. You may have
been exposed to trinomial trees as a scheme for pricing equity-based options. The setup
is in some ways similar to the more familiar binomial trees, except we are not using the
trinomial tree to find the risk-neutral dynamics; rather we are simply using it to simulate the
risk-neutral dynamics – or, equivalently, to evaluate expected final-time payoffs by working
backward through the tree. (One advantage of the trinomial tree: it amounts to an explicit
finite-difference method for the backward Kolmogorov PDE. Second advantage: it lets us
be sure there’s always a node at a specified value of the stock price; this is important e.g.
for valuing barrier options.)

To see the main issues, let’s consider the trinomial tree approximation to the scaled Brow-
nian motion process dx = σ dw with x(0) = 0. The tree is determined once we choose ∆x,
∆t, and the probabilities pu, pm, pd of going up, staying constant, or going down at each
node (see the figure). To understand what choices are appropriate, recall that we identify

x

t∆

∆
p_m

p_d

p_u

the continuous-time limit of a (binomial or trinomial) tree by applying the central limit the-
orem. Therefore the statistics of the continuous-time limit depend only on the means and
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variances of the one-period increments. Thus to get the continuous-time limit dx = σ dw
we require

pu = pd

so the one-period increment has mean value 0, and

pu(∆x)2 + pd(∆x)2 = σ2∆t

so the one-period increment has variance σ2δt. Of course we also require the probabilities
all to be positive and

pu + pm + pd = 1.

Since pu = pd let’s simplify the notation by calling it p. The condition for the variance
requires

p =
σ2

2
∆t

(∆x)2

and positivity of pm = 1 − 2p requires

σ2∆t/(∆x)2 < 1.

Notice that we have a range of possible choices: any p between 0 and 1/2 is OK.

To value an option we work backward in the tree. This is equivalent to finding the expected
final-time payoff E[f(x(T ))] for the stochastic process associated with the tree. We claim
this is equivalent to a standard (explicit) finite-difference approximation of the backward
Kolmogorov equation – which in the present setting is ut + 1

2σ2uxx = 0. Indeed, when we
work backward in the tree, we determine u(x, t) at time t and nodal value x by

u(x, t) = pu(x + ∆x, t + ∆t) + pu(x − ∆x, t + ∆t) + (1 − 2p)u(x, t + ∆t),

which amounts after some reorganization to

u(x, t + ∆t) − u(x, t)
∆t

+ 1
2σ2 u(x + ∆x, t + ∆t) + u(x − ∆x, t + ∆t) − 2u(x, t + ∆t)

(∆x)2
= 0.

We required above that the probabilities in the tree be positive. This is natural, since
they are probabilities. But is it also necessary? Yes indeed! This is the condition that the
numerical scheme be stable. Indeed, if the probabilities are positive then it’s easy to see
that an option with small final-time payoff has small value. (More: we have the “maximum
principle” E[|f(xT )|] ≤ max |f |.) If the probabilities go negative then we lose this property,
and working backward in the tree becomes wildly unstable.

Hull likes to take p = 1/6 (in other words σ2∆t = (1/3)(∆x)2). The reason is that with
this choice, the trinomial tree is an unexpectedly good approximation to the PDE (in this
constant-volatility, zero-drift setting). To see why, let u(x, t) be the solution of the PDE
(with specified final-time value u(x, T ) = f). By Taylor expansion about the point (x, t+∆t)
we have

u(x, t + ∆t) − u(x, t) = ut(x, t + ∆t)∆t − 1
2utt(x, t + ∆t)(∆t)2 + . . .
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and

u(x+∆x, t+∆t)+u(x−∆x, t+∆t)−2ux(x, t+∆t) = uxx(x, t+∆t)(∆x)2+
1
12

uxxxx(x, t+∆t)(∆x)4+. . .

Therefore the error terms in our trinomial tree (finite difference) numerical scheme are, at
leading order,

−(1/2)utt∆t +
σ2

24
uxxxx(∆x)2.

But differentiating the PDE we have utt = (1/4)σ4uxxxx so the preceding expression is equal
to uxxxx times

−σ4

8
∆t +

σ2

24
(∆x)2.

The special choice σ2∆t = (1/3)(∆x)2 makes this vanish. For this special choice of param-
eters, the leading order error is associated with the next even term of the Taylor expansion,
i.e. it is of order (∆x)4 ∼ (∆t)2 rather than of order (∆x)2 ∼ ∆t.

In the trinomial tree version of Hull-White we have a nonzero drift. I doubt that p = 1/6
is any longer so special, because the preceding argument should be disturbed by the drift.
But anyway p = 1/6 is no worse than any other choice.

*****************

Why, when doing Hull-White, must we do something different when x is very
large or very small? We focus now on the trinomial tree approximation to

dx = −ax dt + σ dw

with initial data x(0) = 0. Suppose we use the standard branching, i.e. the process goes
up, stays the same, or goes down with probabilities pu, pm, pd respectively. The condition
that the mean be right is now

pu∆x − pdδx = −ax∆t (1)

and the condition that the variance be right is

pu(∆x)2 + pd(∆x)2 = a2x2(∆t)2 + σ2∆t. (2)

These equations determine pu and pd; they in turn determine pm = 1 − pu − pd.

Working backward in this tree gives, as before, a finite-difference numerical scheme for
solving the backward Kolmogorov PDE, which is now ut − axux + 1

2σ2uxx = 0. Indeed,
when working backward we determine u(x, t) by the formula

u(x, t) = puu(x + ∆x, t + ∆t) + pmu(x, t + ∆t) + pdu(x − ∆x, t + ∆t).

Since pm = 1 − pu − pd this amounts to

[u(x, t+∆t)−u(x, t)]+pu[u(x+∆x, t+δt)−u(x, t+∆t)]+pd [u(x−∆x, t+δt)−u(x, t+∆t)] = 0.

4



Writing δx for the increment of x (taking values ∆x with probability pu, −∆x with proba-
bility pd, and 0 with probability pm), and using the Taylor expansions

u(x + δx, t + ∆t) = u(x) + uxδx + 1
2uxx(δx)2 + . . . , u(x, t + ∆t) = u(x, t) + ut∆t + . . .

we see that
ut∆t + uxE[δx] + 1

2uxxE[(δx)2] = higher order terms.

Thus by getting the mean and variance of δx right, we are designing a finite-difference
scheme for the backward Kolmogorov PDE.

Let’s make (1) and (2) more explicit. Following Hull, we fix ∆x = σ
√

3∆t. After N
timesteps there are 2N + 1 spatial nodes, at x = 0,±∆x, . . . ,±N∆x; therefore we may set
x = j∆x with −N ≤ j ≤ N . A bit of algebra gives

pu =
1
6

+
a2j2(∆t)2 − aj∆t

2
, pd =

1
6

+
a2j2(∆t)2 + aj∆t

2
, pm =

2
3
− a2j2(∆t)2.

These probabilities must be positive. Writing ξ = aj∆t, the conditions for positivity are

1
3

+ ξ2 − ξ > 0,
1
3

+ ξ2 + ξ > 0, ξ2 <
2
3
.

The first two inequalities impose no conditions (the polynomials 1/3 + ξ2 ± ξ = 0 have no
real roots) but the last one requires

aj∆t <
√

2/3 ≈ .816.

We are in trouble after N timesteps, where aNδ ≈ .816.

*****************

Why does it work to truncate the tree? Fixing this problem is surprisingly easy. We
truncate the tree at suitably chosen values of j, and use a different trinomial branching
scheme at the top and bottom spatial nodes (see the figure, which however truncates the
tree much earlier than would normally be done). To see that this works, consider the
situation at the top spatial node jmax. The branching scheme there (Hull’s figure 21.7c)
gets the mean and variance right when

(−pm − 2pd)∆x = −ax∆t, pm(∆x)2 + pd(2∆x)2 = a2x2(∆t)2 + σ2∆t

which gives (using ∆x = σ
√

3∆t as before, and writing x = j∆x)

pu =
7
6
+

a2j2(∆t)2 − 3aj∆t

2
, pd =

1
6
+

a2j2(∆t)2 − aj∆t

2
, pm = −1

3
−a2j2(∆t)2+2aj∆t.

For these to be positive we need ξ = aj∆t to satisfy

7
3

+ ξ2 − 3ξ > 0,
1
3

+ ξ2 − ξ > 0, −1
3
− ξ2 + 2ξ > 0.
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The first two conditions are always satisfied (the polynomials have no real roots), and the
last is satisfied provided ξ lies between 1−√

2/3 = .184 and 1+
√

2/3 = 1.816. It is natural
to truncate the tree as early as possible (this minimizes the number of nodes). Therefore
we should choose jmax so that

ajmax∆t is slightly larger than .184.

The situation at the bottom of the tree is symmetric, so we need not discuss it separately.

*****************

How do we calibrate the tree version of Hull-White to a given initial term
structure? Recall that in continuous time, the solution of

dr = (θ(t) − ar) dt + σ dw, r(0) = r0

was expressed as a sum of two terms: r = α(t) + x(t), where

dx = −ax dt + σ dw, x(0) = 0

is independent of the initial term structure, and

α(t) = f(0, t) +
σ2

2a2

(
1 − e−at

)2
.

This decomposition suggests one way of proceeding: we may model r(t) by the trinomial
tree obtained by adding α(tj) to each nodal value of x at time tj = j∆t. This is reasonable
– but at finite ∆t it only gets the initial term structure approximately correct.

A more popular alternative is to choose the interest-rate tree so that it gives exactly the
observed values for P (0, j∆t) for each j = 1, 2, 3, . . .. We do this by adding well-chosen
values α̃j to the values of x at times jδt, j = 0, 2, 3, . . .. The values α̃j can be chosen
sequentially: choosing α̃0 to be the initial short rate r0 assures that the tree predicts
P (0,∆t) = e−r0∆t as desired; there is a unique value of α̃1 such that the tree correctly
reproduces P (0, 2∆t); etc. (This procedure is spelled out in more detail in Hull’s book.)
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