Continuous Time Finance Notes, Spring 2004 — Section 10, April 7, 2004
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-
tion with the NYU course Continuous Time Finance.

Jump-diffusion models. Merton was the first to explore option pricing when the underly-
ing follows a jump-diffusion model. His 1976 article “Option pricing when underlying stock
returns are discontinuous” (reprinted as Chapter 9 of his book Continuous Time Finance)
is a pleasure to read. My notes follow it — but the article contains much more information
than I'm presenting here. Much has happened since 1976 of course; a recent reference is A.
Lipton, Assets with jumps, RISK, Sept. 2002, 149-153.

I will begin with an introduction to jump-diffusions. Then I'll discuss option pricing using
such models. This cannot be done using absence of arbitrage alone: when the underlying
can jump the market is not complete, since there are two sources of noise (the diffusion
and the jumps) but just one tradeable (the underlying). How, then, can we price options?
Merton’s proposal (still controversial) was to assume that the extra randomness due to
jumps is uncorrelated with the market — i.e. its 3 is zero. This means it can be made
negligibile by diversification, and (by the Capital Asset Pricing Model) only the average
effect of the jumps is important for pricing.

The analogue of the Black-Scholes PDE for a jump-diffusion model is an integrodifferential
equation. You may wonder how one could ever hope to solve it. In the constant-coeflicient
setting the Fourier transform is a convenient tool. That’s beyond the scope of this course.
I’ve nevertheless included a discussion of the Fourier transform and its use in this setting,
as enrichment reading for those who have sufficient background.
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Jump-diffusion processes. The standard (constant-volatility) Black-Scholes model as-
sumes that the logarithm of an asset price is normally distributed. In practice however
the observed distributions are not normal — they have “fat tails,” i.e. the probability of a
very large positive or negative change is (though small) much larger than permitted by a
Gaussian. The jump-diffusion model provides a plausible mechanism for explaining the fat
tails and their consequences.

A one-dimensional diffusion solves dy = pdt + o dw. (Here p and o can be functions of y
and t.) A jump-diffusion solves the same stochastic differential equation most of the time,
but the solution occasionally jumps.

We need to specify the statistics of the jumps. We suppose the occurrence of a jump is a
Poisson process with rate A. This means the jumps are entirely independent of one another.
Some characteristics of Poisson processes:

(a) The probability that a jump occurs during a short time interval of length At is AAt+
o(At).

(b) The probability of two or more jumps occuring during a short time interval of length
At is negligible, i.e. o(At).
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(¢) The probability of exactly n jumps occuring in a time interval of length ¢ is
(d) The mean waiting time for a jump is 1/A.

We also need to specify what happens when a jump occurs. Our assumption is that a jump
takes y to y + J. The jump magnitudes are independent, identically distributed random
variables. In other words, each time a jump occurs, its size J is selected by drawing from
a pre-specified probability distribution.

This model is encapsulated by the equation
dy = pdt + odw + JdN

where N counts the number of jumps that have occurred (so it takes integer values, starting
at 0) and J represents the random jump magnitude. Ito’s Lemma can be extended to this
setting: if v(z,t) is smooth enough and y is as above then v(y(t), t) is again a jump-diffusion,
with

do(y(t), )] = (v + pog + 50°05)dt + ovpdw + [o(y(t) + J,t) — v(y(t), t)]dN.

All the terms on the right are evaluated at (y(t),t), as usual. In writing the jump term,
we're trying to communicate that while the occurence of a jump in v(y(t),t) is determined
by N (i.e. by the presence of a jump in y) the size of the jump depends on y(t) and the
form of v.

Now consider the expected final-time payoff

u(x’ t) = Ey(t)::c [w(y(T))]

where w(x) is an arbitrary “payoftf” (later it will be the payoff of an option). It is described
as usual by a backward Kolmogorov equation

ur+Lu=0fort <T, with w(z,T)=w(z)att="T. (1)
The operator £ for our jump-diffusion process is
Lu = pugy + %a%m + AE [u(z + J,t) — u(z,t)].

The expectation in the last term is over the probability distribution of jumps. The proof
of (1) follows the standard strategy used for diffusions without jumps (see e.g. Section 1 of
my PDE for Finance lecture notes for a review of this topic). Let u solve (1), and apply
Ito’s formula. This gives

T T
w(y(T), T) — u(w,t) = /0 (o) (y(s), 5) duw + /0 (s + 1tz + 30%u20) (y(s), ) ds

T
+/ [u(y(s) + J,s) —u(y(s),s)|dN.
0

Now take the expectation. Only the jump term is unfamiliar; since the jump magnitudes
are independent of the Poisson jump occurence process, we get

E ([uly(s) + J,5) —u(y(s), s)ldN) = E ([u(y(s) + J;5) — u(y(s), s)]) Ads.



Thus when u solves (1) we get
Blu(y(T), T)] - u(z, t) = 0.

This gives the result, since u(y(7T'),T) = w(y(T)) from the final-time condition on w.

A similar argument shows that the discounted final-time payoff

w(w,t) = Byy— [e T Du(y(T))]

solves
up+Lu—ru=0fort<T, with w(z,T)=w(z)att="T,

using the same operator L.
What about the probability distribution? It solves the forward Kolmogorov equation,
ps— L'p=0"for s >0, with p(z,0)=po(2)

where py is the initial probability distribution and £* is the adjoint of £. (See Section 1 of
my PDE for Finance lecture notes for an explanation why this must be so.) What is the
adjoint of the new jump term? For any functions £(z),n(z) we have

| B+ D) - @l de = [ @Bl - )~ €(:)) dz =
since [ E[E(z + J)|n(z)dz = [0 &(2)E[n(z — J)] dz. Thus

L'p = 3(%p)zz — (up)= + AE [p(z — J) — p(2)],
i.e. the probability distribution satisfies

ps = 3(07p)zz + (up): = AE [p(z = J, ) = p(z, )] = 0.
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Hedging and the risk-neutral process. I'd like to say that the time-0 value of an
option with payoff w(S) should be the discounted final-time payoff under “the risk-neutral
dynamics.” This is not obvious; indeed, it is a modeling hypothesis not consequence of
arbitrage. I now explain the meaning and logic of this hypothesis, following Merton.

It is convenient to focus on the stock price itself not its logarithm. If (as above) J represents
a typical jump of log S then the stock price leaps from S to e’ S, i.e. the jump in stock price
is (e/ —1)S. So (applying the jump-diffusion version of Ito to S = e¥, with dy = pdt + odw)
the stock dynamics is

dS = (u+ 10*)Sdt + o Sdw + (e’ — 1)SdN.

The associated risk-neutral process is determined by two considerations:



(a) it has the same volatility and jump statistics — i.e. it differs from the subjective
process only by having a different drift; and

(b) under the risk-neutral process e~ 'S is a martingale, i.e. dS —rSdt has mean value 0.
We easily deduce that the risk-neutral process is
dS = (r — AE[e! —1])Sdt + 0 Sdw + (¢! — 1)SdN. (2)
Applying Ito once more, we see that under the risk-neutral dynamics y = log S satisfies
dy = (r — 30* — AE[e’ — 1])dt + odw + JdN
Thus the formalism developed in the preceding subsection can be used to price options; we
need only set 1 =r — 302 — AE[e/ —1].

But is this right? And what are its implications for hedging? To explain, let’s examine
what becomes of the standard demonstration of the Black-Scholes PDE in the presence of
jumps. Assume the option has a well-defined value u(S(t),t) at time ¢. Suppose you try to
hedge it by holding a long position in the option and a short position of A units of stock.
Then over a short time interval the value of your position changes by

dlu(S(t),t)] — AdS = wdt +us([u+ 20%]Sdt + 0Sdw) + Sugso?S*dt
+Hu(e?S(t),t) — u(S(t),t)|dN
—A([p+ Lo?)Sdt + 0Sdw) — A(e? —1)SdN.

There are two sources of randomness here — the Brownian motion dw and the jump process
dN — but only one tradeable. So the market is incomplete, and there is no choice of A that
makes this portfolio risk-free.

But consider the choice A = ug(S(t),t). With this choice the randomness due to dw cancels,
leaving only the uncertainty due to jumps:

change in portfolio value = (us+302S%ugs)dt+{[u(e’S(t),t)—u(S(t),t)]—us(e’ S—S)}dN.

To make progress, we must assume something about the statistics of the jumps. Merton’s
suggestion (still controversial) was to assume they are uncorrelated with the marketplace.
The impact of such randomness can be eliminated by diversification. Put differently: ac-
cording the the Capital Asset Pricing Model, for such an investment (whose (3 is zero) only
the mean return is relevant to pricing. So the mean return on our hedge portfolio should
be the risk-free rate:

(ue + %0252uSs)dt + AE[u(e’S(t),t) —u(S(t),t) — (e7S — S)ugldt = r(u — Sug)dt. (3)

After rearrangement, this is precisely the backward Kolmogorov equation describing the
discounted final-time payoff under the risk-neutral dynamics (2):

us + (r — AE[e? —1])Sug + %02522@5 —ru+ ME[u(e’ S, t) — u(S,t)] = 0.



A final remark about the experience of the investor who follows this hedge rule. If the
option value is convex in S (as we expect for a call or a put) then the term in (3) associated
with the jumps is positive:

Elu(e’S(t),t) — u(S(t),t) — (¢7S — S)ug] > 0.

So in the absence of jumps the value of the hedge portfolio (long the option, short A = ug
units of stock) rises a little slower than the risk-free rate. Without accounting for jumps, the
investor who follows this hedge appears to be falling behind (relative to a cash investment
at the risk-free rate). But due to convexity the net effect of the jumps is favorable — exactly
favorable enough that the investor’s long-term (mean) experience is risk-free.
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Let’s review why we’re doing this. Certainly not for pricing European options, which are
relatively liquid — their prices are visible in the marketplace. Interpreting their prices using
standard Black-Scholes (deducing an implied volatility from the option price) one obtains a
result in contradiction to the model: the implied volatility depends on maturity and strike
price (the dependence on strike price is often called the “volatility smile”). The introduction
of jumps provides a plausible family of models that’s better able to fit the market data. But
it introduces headaches of modeling and calibration (e.g. how to choose the distribution of
jumps?). If the goal were merely to price Europeans, there would be no reason to bother —
their prices are visible in the marketplace.

So why are we doing this? Three reasons. One is the desire for a consistent theoretical
framework. The second, more practical, is the need to hedge (not simply to price) options
— the Delta predicted by a jump-diffusion model is different from that of the Black-Scholes
framework. A third reason is the need to price and hedge exotic options (e.g. barriers)
which are less liquid. The basic idea: calibrate your jump-diffusion model using the market
prices of European options, then use it to price and hedge barrier options.
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Solution via Fourier transform. To assess what a jump-diffusion model says about “fat
tails” we need a scheme for solving the forward Kolmogorov equation. And to value options
(e.g. to calibrate the model to market prices) we need a scheme for solving the backward
Kolmogorov equation. In the constant-coefficient setting these integrodifferential equations
can be solved using the Fourier transform. The rest of these notes explain how. (This
material is offered for enrichment purposes only; it will not be presented in lecture, and will
not be required for homeworks or the exam.)

We henceforth focus on
dy = pdt + odw + JdN

with 1 and o constant. To be specific let’s focus on the forward Kolmogorov equation,
which is now

Ps — %02])22 + pup. — AE [p(z = 8) - p(z, 8)] =0 (4)



and let us solve it with initial condition p(0) = d,—¢. (This will give us the fundamental
solution, i.e. p(z,s) = probability of being at z at time s given that you started at 0 at
time 0.)

Why is the Fourier transform useful in this setting? Basically, because the forward equation
is a mess — nonlocal in space (due to the jump term) and involving derivatives too (the
familiar terms). But when we take its Fourier transform in space we get a simple, easy-to-
solve ODE. The result is a simple expression not for the probability distribution itself, but
rather for its Fourier transform — what a probabilist would call the characteristic function
of the distribution.

Most students in this class will be relatively unfamiliar with the Fourier transform. Here’s
a brief summary of what we’ll use:

(a) Given a function f(z), its Fourier transform f(&) = F[f](€) is defined by
fo= [ r@etan,

Notice that even if f is real-valued, f is typically complex-valued.

(b) Elementary manipulation reveals that the translated function f(x — a) has Fourier
transform

Flf(x —a))(€) = e f(€)

(c) Integration by parts reveals that the Fourier transform takes differentiation to multi-
plication:

Ffa)(€) = —i&f(€)

(d) It is less elementary to prove that the Fourier transform takes convolution to multi-
plication: if h(z) = [*°_ f(z —y)g(y) dy then

~ ~

h(§) = f(£)g(&)-

(e) Another less elementary fact is Plancherel’s formula:
oo 1 o]
de = — d
| Tede=- [ FIfIFlga

where f is the complex conjugate of f.

(f) The Fourier transform is invertible, and

1
o

fa)=o [ Z e f(¢) de

(g) The Fourier transform of a Gaussian is again a Gaussian. More precisely, for a centered

Gaussian with variance o2,

1 2 /5 2 2.2
]_-{ e /20 ] — e £ /2‘
\V2mo



OK, let’s use this tool to solve the forward equation (4). We apply the Fourier transform
(in space) to each term of the equation. The first three terms are easy to handle using
property (c¢). For the jump term, let the jump J have probability density w, that

Elp(z—J) - /[pz— - T)dJ = /z— T)dJ - p(z).

By property (d) this the Fourier transform of this term is (@ — 1)p. Thus in the Fourier
domain the equation becomes

AL 2428 e ~ A

Ps +50°EPp—iup — Mo —1)p=0

with initial condition p(0) = [ €¥*6,—¢ dz = 1. Writing the equation in the form

ﬁs = K(&)ﬁ

with
K(&) = =307 +ilp+ MN@(&) — 1)

we recognize immediately that the solution is

SOET (5)

The probability density itself can of course be obtained by taking the inverse Fourier trans-

form: | oo
ples) = o [ e @ g (6)
21 J—oo

Option pricing. What use is this? Well, one can explore what the tails of the distribution
look like, as you vary the jump rate A and jump distribution w. Or one can use it to
price options. Recall that the value of an option should be the discounted expected payoff
relative to the risk-neutral probability distribution. Assume for the moment that the under
the risk-neutral distribution the stock price is e¥ where y is a jump-diffusion as above. Then
the time-0 value of an option with payoff w is

e_rTEy(O)zln So [w<ey)]

if the time-0 stock price is Sp. If w(S) vanishes for S near 0 and oo (corresponding to y very
large negative or positive) then the option price is easy to express. Let v(y) = w(e¥) be
the payoff as a function of y, and let z = In Sy. By translation invariance, the probability
density of y is p(z — z,T') where p is given by (6). Therefore

Eyomsolw(@)] = [plz =2, To(z) dz
= 5 [FBG e Tl e
= o [ea-e T @



In the last step we used that Flp(z —x,T)] = €%%p(&, T), and the fact that the complex con-
jugate of p(&,T) = [ e *p(z,T)dz is [ e %*p(z,T)dz = p(—&,T) since p is real. Equation
(7) reduces the task of option pricing to the calculation of two Fourier transforms (those of
w and v) followed by a single integration (7).

The hypothesis that the payoff w(S) vanishes near S = 0 and S = oo is inconvenient,
because neither a put nor a call satisfies it. Fortunately this hypothesis can be dispensed
with. Consider for example the call w(S) = (S — K)4, for which v(y) = (e — K)4. Its
Fourier transform is not defined on the real axis, because the defining integral diverges as
y — 00. But e”*u(y) decays near oo for o > 1. So its Fourier transform in y is well-defined.
This amounts to examining the Fourier transform of v along the line ¢ = « (here 3¢ is
the imaginary part of &) since

Flem o)) = [ ey dy.

Fortunately, the Plancherel formula isn’t restricted to integrating along the real axis in
Fourier space; one can show that

/_O:O fgdx = % /_o:o FIf1(&1 + i) Flgl(ér + ier) d&y

if the Fourier transforms of f and g exist (and are analytic) at I§ = «. Using this, an
argument similar to that given above shows that

1

Eyomslw(e)] = [ p(z =2, Tyo(z)dz = o [ 0505 4o, T)o(6 + ia)ds.

By the way, in the case of the call the Fourier transform of v is explicit and easy:
1+
£ —ig

by elementary integration. Here & = & + i« is any point in the complex plane such that
the integral converges (this requires o > 1).

o6) = [ eMo(er — K)dy = -



