Continuous Time Finance Notes, Spring 2004 — Section 1. 1/21/0/
Notes by Robert V. Kohn, Courant Institute of Mathematical Sciences. For use in connec-
tion with the NYU course Continuous Time Finance.

This section discusses risk-neutral pricing in the continuous-time setting, for a market with
just one source of randomness. In doing so we’ll introduce and/or review some essential tools
from stochastic calculus, especially the martingale representation theorem and Girsanov’s
theorem. For the most part I'm following Chapter 3 of Baxter & Rennie.
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Let’s start with some general orientation. Our focus is on the pricing of derivative securities.
The most basic market model is the case of a lognormal asset with no dividend yield, when
the interest rate is constant. Then the asset price S and the bond price B satisfy

dS =uSdt+oSdw, dB=rBdt

with p, o, and r all constant. We are also interested in more sophisticated models, such as:

(a) Asset dynamics of the form dS = u(S,t)Sdt + o(S,t)S dw where u(S,t) and o(S,t)
are known functions. In this case S is still Markovian (the statistics of dS depend
only on the present value of S). Almost everything we do in the lognormal case has
an analogue here, except that explicit solution formulas are no longer so easy.

(b) Asset dynamics of the form dS = pSdt + 0,5 dw where p; and o, are stochastic
processes (depending only on information available by time ¢; more technically: they
should be F;-measurable where F; is the sigma-algebra associated to w). In this case
S is non-Markovian. Typically u and ¢ might be determined by separate SDE’s.
Stochastic volatility models are in this class (but they use two sources of randomness,
i.e. the SDE for o makes use of another, independent Brownian motion process; this
makes the market incomplete.)

(c) Interest rate models where r is not constant, but rather random; for example, the
spot rate r may be the solution of an SDE. (An interesting class of path-dependent
options occurs in the modeling of mortgage-backed securities: the rate at which people
refinance mortagages depends on the history of interest rates, not just the present spot
rate.)

(d) Problems involving two or more sources of randomness, for example options whose
payoff depends on more than one stock price [e.g. an option on a portfolio of stocks; or
an option on the max or min of two stock prices|; quantos [options involving a random
exchange rate and a random stock process|; and incomplete markets [e.g. stochastic
volatility, where we can trade the stock but not the volatility].

My goal is to review background and to start relatively slowly. Therefore I'll focus in this
section on the case when there is just one source of randomness (a single, scalar-valued
Brownian motion).



Option pricing on a binomial tree is easy. The subjective probability is irrelevant,
except that it determines the stock price tree. The risk-neutral probabilities (on the same
tree!) are determined by

ERN[e™Ots, 5] = st

If the interest rate r is constant, then the price of a contingent claim with payout f(Sr) at
time T is obtained by taking discounted expected payoff

Vo = e "TERN[f(ST)].

The binomial tree method works even if interest rates are not constant. They can even
be random (they can vary from node to node; all that matters is that the interest earned
starting from any node be the same whether the stock goes up or down from that node). But
if interest rates are not constant then we must discount correctly; and if they are random
then the discounting must be inside the expectation:

T
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If the payout is path-dependent (or if the subjective process is non-Markovian, i.e. its SDE
has history-dependent coefficients) then we cannot use a recombining tree; in this case the
binomial tree method is OK in concept but hard to use in practice.

Recall what lies behind the binomial-tree pricing formula: the binomial-tree market is
complete, i.e. every contingent claim is replicatable. The prices given above are the initial
cost of a replicating portfolio. So they are forced upon us (for a given tree) by the absence
of arbitrage. (My Derivative Securities notes demonstrated this “by example,” but see
Chapter 2 of Baxter & Rennie for an honest yet elementary proof.)

The major flaw of this binomial-tree viewpoint: the market is not really a binomial tree.
Moreover, a similar argument with a trinomial tree would not give unique prices (since
a trinomial market is not complete), though it’s easy to specify a trinomial model which
gives lognormal dynamics in the limit 6¢ — 0. Similar but more serious: what to do when
there are two stocks that move independently? (Using a binomial approximation for each
gives an incomplete model, since each one-period subtree has four branches but just three
tradeables.) Thus: if the market model we’d really like to use is formulated in continuous
time, it would be much better to formulate the theory as well in continuous time (viewing
the time-discrete models as numerical approximation schemes).

In the continuous-time setting, options can be priced using the Black-Scholes
PDE. The solution of the Black-Scholes PDE tells us how to choose a replicating portfolio
(namely: hold A = g—‘g(St, t) units of stock at time t); so the price we get using the Black-
Scholes PDE is forced upon us by the absence of arbitrage, just as in the analysis of binomial
trees. Let’s be clear about what this means: a continuous-time trading strategy is a pair
of stochastic processes, ¢; and 1, each depending only on information available by time ¢;
the associated (time-dependent) “portfolio” holds ¢; units of stock and 1); units of bond at
time t. Its value at time ¢ is thus

Wy = ¢St + ¢ By.



(I call this W not V', because it represents the investor’s wealth at time ¢ as he pursues this
trading strategy.) It is self-financing if

dW = ¢dS + 1 dB.

Our assertion is that if V(.S,t) solves the Black-Scholes PDE, and its terminal value V' (S,T")
matches the option payoff, then the associated trading strategy
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is self-financing, and its value at time ¢ is V(Sy,t) for every ¢. (The assertion about its
value is obvious; the fact that it’s self-financing is a consequence of Ito’s formula applied
to V(S,t), together with the Black-Scholes PDE and the fact that dB = rBdt.) Thus
V(Sp,0) is the time-0 value of a trading strategy that replicates the option payoff at time
T.

We can recognize the option value as its “risk-neutral expected discounted payoft” by notic-
ing that the Black-Scholes PDE is linked to a suitably-defined “risk neutral” diffusion by
the Feynman-Kac formula. Indeed, suppose V solves the Black-Scholes PDE and S solves
the stochastic differential equation dS = rSdt + oS dw; for simplicity let’s suppose the
interest rate r is constant. Then eT(T*t)V(St, t) is a martingale, since its stochastic differ-
ential is "7 times —rVdt 4+ VsdS + (1/2)Vss0252dt + V; = 0SVs dW. So the expected
value of e"T=YV (S;,t) at time T (the risk-neutral expected payoff) equals the value of this
expression at time 0, namely €7V (Sy,0), as asserted. (The preceding argument works,
with obvious modifications, even if r is time-dependent or S-dependent. In that setting the
discount factor exp(r(T — t)) must be replaced by exp( j;T rds).)
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The major shortcoming of this Black-Scholes PDE viewpoint is this: it is limited to Marko-
vian evolution laws (dS = uS dt + ¢S dw, where p and o may depend on S and ¢, but not
on the full history of events prior to time ¢) and path-independent options.

Beyond this rather practical restriction, there’s also a conceptual issue. The probabilistic
viewpoint is in many ways more natural than the PDE-based one; for example, it gives the
analogue of our binomial tree discussion; it provides the basis for Monte Carlo simulation.



Moreover, for some purposes (e.g. understanding change of numeraire) the probabilistic
framework is the only one that’s really clear. So it’s natural to seek a continuous-time
understanding directly analogous to what we achieved with binomial trees. (It was also
natural to postpone this till now, since such an understanding requires sufficient command
of stochastic calculus.)

In summary: consider the triangle shown in the Figure, which shows three alternative
ways of thinking about the pricing of derivative securities in a continuous-time framework.
The course Derivative Securities focused mainly on two legs of the triangle (connecting the
Black-Scholes PDE with the replicating portfolio, and with a suitable discounted expected
risk-neutral payoff). Now we’ll seek an equally clear understanding of the third leg.
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The main tools we need from stochastic calculus are the martingale representation theorem
and Girsanov’s theorem. We now discuss the former, for diffusions involving a single source
of randomness, i.e. diffusions of the form dY = p;dt + o¢ dw, where u; and o; may be
random (but depend only on information available at time ¢). Recall that an F;-adapted
stochastic process My is called a martingale if

(a) it is integrable, i.e. E[|Y;|] < oo for all ¢, and

(b) its conditional expectations satisfy E[M|Fs] = M, for all s < ¢.

The expectation is of course with respect to a measure on path space. When M solves an
SDE of the form dM = pdt + o dw where w is Brownian motion then the expectation we
have in mind is the one associated with the underlying Brownian motion (and the sigma-
algebra F; is the one generated by this Brownian motion). Soon we’ll discuss Girsanov’s
theorem, which deals with changing the measure (and, as a result, changing the stochastic
differential equation). Then we must be careful which measure we're using — calling M a
P-martingale if conditions (a) and (b) hold when the expectation is taken using measure
P. But for now let’s suppose there’s only one measure under discussion, so we need not
specify it.

The integrability condition is important to a probabilist (it’s easy to construct processes
satisfying (b) but not (a) — these are called “local martingales” — and many of the theorems
we want to use have counterexamples if M is just a local martingale). However the processes
of interest in finance are always integrable, and my purpose is to get the main ideas without
unnecessary technicality, so I won’t fuss much over integrability.

There are two different ways of constructing martingales defined for 0 < ¢ < T. One
is to take an Fp-measurable random variable X (e.g. an option payoff — which is now
permitted to be path-dependent, i.e. to depend on all information up to time 7') and take
its conditional expectations:

M, = E[X|7) 1)
This is a martingale due to the “tower property” of conditional expectations. The second
method of constructing martingales is to solve a stochastic differential equation of the form

dM = ¢ dw (2)



where ¢; is Fi-adapted (i.e. it depends only on information available by time ¢).

Of course in considering (b), we need some condition on ¢ to be sure M is integrable. An
obvious sufficient condition is that E| fOT 1?2 ds] < oo, since this assures us that E[M?(t)] <
oo. In finance (2) typically takes the form dM = o,M dw. In this case one can show
that the “Novikov condition” F {exp (% OT o2 ds)} < oo is sufficient to assure integrability.

This fact is not easy to prove with full rigor; but it is certainly intuitive, since the SDE
dM = o:M dw has the explicit solution

t 1t
M, = Moefo osdw—3 fo o2ds

(To see this: apply Ito’s formula to the right hand side to verify that the process defined
by this formula satisfies dM = o, M dw.)

In its simplest form, the martingale representation theorem says that any martingale can
be expressed in the form (2). Moreover the associated ¢; is unique. Thus, for example, a
martingale created via conditional expectations as in (1) can alternatively be described by
an SDE.

We need a slightly more sophisticated version of the martingale representation theorem.
Rather than expressing M in terms of the Brownian motion w, we’ll need to represent it
in terms of another martingale, say N. The feasibility of doing this is obvious: if N and
M are both martingales, then our simplest form of the martingale representation theorem
says they can both be represented in the form (2):

dM = oM dw and dN = ¢V dw.
So eliminating dw gives a representation of the form
dM =Yy dN (3)

with ¢ = ¢M /¢V. This representation is the more sophisticated version we wanted. Of
course we cannot divide by 0: we assumed, in deriving (3), that ¢" # 0 with probability 1.
Like our simpler version (2), the representation (3) is unique, i.e. the density v is uniquely
determined by M and N.
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The martingale representation theorem is all we need to connect risk-neutral expectations
with self-financing portfolios. This connection works even for path-dependent options, and
even for stock processes whose drift and volatility are random (but F;-measurable). It also
permits the risk-free rate to be random. To demonstrate the strength of the method we
work at this level of generality. Thus our market has a stock whose price satisfies

dS = S dt+ oS dw, S(0) =5
and a bond whose value satisfies

dB =nrBdt, B(0)=1



where p, o, and r; are all Fy-measurable. Our goal is to price an option with payoff X,
where X is any JFr-measurable random variable.

To get started, we need one more assumption. We suppose there is a measure ) on path
space such that the ratio S;/B; is a Q-martingale. This is the “risk-neutral measure.” The
whole point of Girsanov’s theorem is to prove existence of such a @ (and to describe it).
For now, we simply assume () exists.

Here’s the story: given such a @), we’ll show that every payoff X is replicatable. Moreover
if V4 is the value at time t of the replicating portfolio then V; is characterized by

Vi/ By = Eq|X/Br|Fi]. (4)
In particular, the initial cost of the replicating portfolio is the expected discounted payoff
Vo = Eg[X/Br]. This is therefore the value of the option.

The proof is surprisingly easy. Let V; be the process defined by (4). Then V;/B; is a Q-
martingale, by (1) applied to X/Byr. Also S;/B; is a Q-martingale, by hypothesis. Therefore
by the martingale representation theorem there is a process ¢; such that

d(V/B) = 6 d(S/B).
We shall show that the trading strategy which holds ¢; units of stock and ¢y = (V;—¢:.S;)/ By
units of bond at time ¢ is self-financing and replicates the option.

Easiest first. It replicates the option because V; = ¢.S; + ¢4 B; (by the choice of ) and
Vr = X (by (4), noting that X/Br is Fr measurable so taking its conditional expectation
relative to Fr doesn’t change it). Thus Vp = X, which is exactly what we mean when we
say it replicates the option.

OK, now a little work. We must show that the proposed trading strategy is self-financing,
i.e. that dV = ¢¢dS + ¢ dB. Recall from Ito’s lemma that when X and Y are diffusions,
d(XY)=XdY +Y dX +dX dY. Also note that if the SDE for one of the two processes
has no “dw” term then dX dY = 0 and the formula becomes d(XY) = X dY +Y dX. We
apply this twice: since V = (V/B)B and d(V/B) = ¢ d(S/B) we have

dV = d((V/B)B) = B$¢d(S/B) + (V/B) dB:; (5)
and since S = (S/B)B we have
¢dS = Bod(S/B) + ¢(S/B) dB. (6)
Now, from the definition of 1) we have
VdB = [(V/B) — ¢(S/B)]dB. (7)
Adding the last two equations gives
¢dS + 1 dB = B¢ d(S/B) + (V/B) dB.

Comparing this with (5), we conclude that the portfolio is self-financing. The proof is now
complete.



Question: where did we use the hypothesis that dB = r;Bdt? Answer: when we applied
Ito’s formula in (5) and (6). Remarkably, however, this hypothesis was not necessary! The
assertion remains true (though the proof needs some adjustment) even if B is a volatile
diffusion process. Thus B need not be a the value of a bond! We’ll return to this when we
discuss change of numeraire. But let’s check now that the preceding argument works even
if B is a volatile diffusion (i.e. if it solves an SDE with a nonzero dw term). In this case
(5) must be replaced by

dV = d((V/B)B) = Béd(S/B) + (V/B)dB + d(V/B) dB
and (6) by
$dS = Bod(S/B) + &(S/B) dB + $d(S/B) dB.

Equation (7) remains unchanged:
WdB = [(V/B) - §(5/B)] dB.

Adding the last two equations, and remembering that ¢ d(S/B) = d(V/B), we conclude as
before that dV = ¢ dS + 1 dB, so the portfolio is still self-financing.

Our argument tells us how to replicate (and therefore price) any option, assuming only the
existence of a “risk-neutral measure” ) with respect to which S/B is a martingale. We
have in effect shown that our simple market (with one source of randomness) is complete.
It also follows that the value P; of any tradeable must be such that P;/B; is a @-martingale
(for the same measure @)). Indeed, we can replicate the payoff Pr starting at time ¢ at
cost ByEq[Pr/Br|F:]. To avoid arbitrage, this had better be the market price of the same
payoff, namely P,. Thus P,/B; = Eq[Pr/Br|F:], as asserted.
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Now what about the existence of Q7 This is the point of Girsanov’s theorem. Restricted to
the case of a single Brownian motion, it says the following. Consider a measure P on paths,
and suppose w is a P-Brownian motion (i.e. the induced measure on w; — ws is Gaussian
for each s < ¢, with mean 0 and variance ¢ — s, and w; — wy is independent of ws — w, for
r < s < t.). Consider in addition an adapted process 7, and the associated martingale

t t
My = e Jovedw=z JoZds,

(As noted earlier in these notes, 7; must satisfy some integrability condition to be sure M;

is a martingale; the Novikov condition Ep [exp (% OT v2 ds)} < oo is sufficient.) Finally,

suppose we’re only interested in behavior up to time 7. Then the measure @) defined by
Eq[X] = Ep[MrX] for every Fpr-measurable random variable X

(in other words d@/dP = Mry) has the property that

t
Wy = wy + / vs ds is a Q-Brownian motion. (8)
0

7



Moreover, we have the following formula for conditional probabilities taken with respect to
Q:
EQ[X¢|Fy] = Ep[(My /M) X¢|Fs] = M Ep[(My Xy |F] (9)

whenever X is Fi-measurable and s <t <T.

It’s easy to state the theorem, but not so easy to get one’s head around it. The discussion in
Baxter & Rennie is very good: they explain in particular how this generalizes our familiar
binomial-tree change of measure from the “subjective probabilities” to the “risk-neutral”
ones. I also recommend the short Section 3.1 of Steele (on importance sampling, for Gaus-
sian random variables), to gain intuition about change-of-measure in the more elementary
setting of a single Gaussian random variable. Baxter & Rennie give an honest proof of (8)
for the special case 74 = constant in Section 3.4 (note that the solution of Problem 3.9 is
in the back of the book). Avellaneda & Laurence give essentially the same argument in
their Section 9.3, but they present it in greater generality (for nonconstant ;). Moreover
Avellaneda & Laurence explain the formula (9) for conditional probabilities in the appendix
to their Chapter 9. I recommend reading all these sources to gain an understanding of the
theorem and why it’s true. Here I'll not repeat that material; rather, I simply make some
comments:

(a) In finance, the main use of Girsanov’s theorem is the following: suppose S solves the
SDE dS = a;dt + [; dw where w is a P-Brownian motion. Then it also solves the
SDE dS = (o — Biyt) dt + By diwo where dw is a @-Brownian motion. Indeed, (8) can
be restated as dw = dw+y; dt, and with this substitution the two SDE’s are identical.

(b) Why is there a measure @ such that S/B is a Q-martingale? Well, if S and B
solve SDE’s then so does S/B (by Ito’s lemma). Suppose this SDE has the form
d(S/B) = aydt + ; dw. Then we can eliminate the drift by choosing v, = a;/5;. In
other words, applying Girsanov with this choice of 74 gives d(S/B) = (3, dw with @ a
Q-Brownian motion. Thus S/B is a Q-martingale.

(c) Our statement of Girsanov’s theorem selected (arbitrarily) an initial time 0. This
choice should be irrelevant, since Brownian motion is a Markov process (so it can be
viewed as starting at any time s with initial value wg). Also, our statement selected
(arbitrarily) a final time 7', which should also be irrelevant. These choices are indeed
unimportant, as a consequence of (i) the fact that M; is a P-martingale, and (ii)
relation (9), combined with the observation that

M(#)/M(s) = e Jew vz [dar,

Bottom line: we have shown in great generality that there is a “risk-neutral” measure @)
with respect to which S/B is a martingale, and using it we have shown how to replicate
(and therefore price) an arbitrary (even path-dependent) contingent claim.

What good is this? First of all it tells us that Monte-Carlo methods can be used even
for path-dependent options and non-Markovian diffusions (whose SDE’s have coefficients
depending on prior history). But besides that, it is even useful in relatively simple settings



(e.g. constant drift, volatility, and interest rates) for mastering concepts like change-of-
numeraire. We’'ll discuss such applications next. (If you want to read ahead, look at
Chapter 4 of Baxter & Rennie.)



