

Continuous Time Finance, Spring 2004 – Homework 1
Distributed 1/28/04, due 2/4/04

(1) In the Section 1 notes, we proved that if V solves the Black-Scholes PDE with final-value f , then $V(S_0, 0) = e^{-rT} E[f(S_T)]$ where S solves the SDE $dS = rS dt + \sigma S dw$ with initial value $S(0) = S_0$. Let's do something similar for a stochastic interest rate. Suppose the spot rate r_t solves a diffusion of the form $dr = \alpha dt + \beta dw$ with $r(0) = r_0$, where $\alpha = \alpha(r, t)$ and $\beta = \beta(r, t)$ are fixed functions of r and t . Consider the function $U(r, t)$ defined by solving $U_t + \alpha U_r + \frac{1}{2}\beta^2 U_{rr} - rU = 0$ with final value $U(r, T) = 1$. Show that

$$U(r_0, 0) = E \left[e^{- \int_0^T r(s) ds} \right].$$

[Comment: if the SDE for r is the risk-neutral process, then $U(r_0, 0)$ is the value of a zero-coupon bond that pays one dollar at time T . Hint: show that $U(r(t), t) \exp \left(- \int_0^t r(s) ds \right)$ is a martingale.]

(2) Consider a non-dividend-paying stock whose share price satisfies $dS = \mu S dt + \sigma S dw$, and assume for simplicity that the risk-free rate r is constant. Consider a European option with maturity T and payoff $f(S_T)$. We now have two apparently different ways to price and hedge it:

- (a) Using the Black-Scholes PDE. The value at time t is $V(S_t, t)$ where V solves the Black-Scholes PDE with final-value f , and the hedge portfolio consists of $\phi_t = \frac{\partial V}{\partial S}(S_t, t)$ stock and $(V(S_t, t) - \phi_t S_t)/B_t$ units of the risk-free bond whose value at time t is B_t .
- (b) Using the Girsanov's theorem and the martingale representation theorem. This means we must find a risk-neutral measure Q with respect to which S_t/B_t is a martingale; then the option value at time t is $V_t = B_t E_Q[f(S_T)/B_T | \mathcal{F}_t]$, and the hedge ratio ϕ_t is determined by the martingale representation theorem, which tells us that $d(V/B) = \phi_t d(S/B)$ for some ϕ_t .

Show these two frameworks are consistent. In other words, show that the value and hedge defined by (a) satisfy the properties asserted by (b).

- (3) Consider the discussion in the Section 2 notes concerning options on foreign exchange rates.
 - (a) What PDE should the dollar investor solve to value an option with payoff $f(C_T)$? How does it determine the hedge portfolio?
 - (b) What PDE does the pound investor solve to value the same option? How is his hedge portfolio related to that of the dollar investor?
 - (c) Use these results to give another proof that the two investors price the option consistently.