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Our starting point is the following question:
Glven a differential equation div ¢ = 0, an inhomogeneous boundary

condition o¢-.n = f, and an upper bound |o| < ¢, find the vector field
¢ with the smallest possible support.

In mechanical terms, this asks:

Among all stresses that are in equilibrium with a given surface force
f and subject to a plastic yileld limit | o] £ ¢, find the stress a
which vanishes in the largest possible set.

Or, more briefly, since we can remove any part of a given plastic

structure in which the stresses are zero:

Find the lightest substructure which will withstand the given load.
This 1is one form of the fundamental problem of optimal design.

It differs from the usual problem of stress analysis in which lceds,
the shape of the structure, and the properties of the material are all
prescribed. 1In that case the stress field is the solution to an
elliptic boundary value problem. In our case only the load 1is pre-
scribed, together with constraints on the geometry and the material.
The shape is then chosen to minimize the welght. We shall see that
in the extreme case when the design 1s optimal, its shape can become
non-standard and so can the material.

This paper begins with one case of the design problem: an
infinite plastic evlinder subifect to antinlane shaar. That nrahlem
has the great advantage that the unknown stress has only two nonzero
components @, = (x,y) and 0, = (x,y) The displacement is a
scalar u(x,y), and 80 1s the stress function ¥(x,y). We studied
this problem earlier, and we return to it here because it brings out
most clearly the fundamental steps in the analysis:

1. The welght minimization problem is not convex.



2. Its relaxation to a convex problem (which has the same minimum)
is equivalent to the introduction of fibered composites. Instead of a
0-1 choice between no material and the original material, there is at
each point a continuum of choices: the density and direction of the
fibers are to be optimized.

3. This relaxed (or convexified) problem is well-posed. The
admissible ¥ are functlions of bounded variation over Q. The coarea

formula leads to the solution--in examples as well as theory--and also to
- 1ts regularity: stress trajectories are slightly better than Cl.

It will become evident that the optimal designs are extremely
difficult, in other words impossible, to manufacture. The closest
approach may be MacReady's Gossamer Albatross, the 55-pound aircraft
which crossed the English Channel powered by a cyclist. It was designed
. by iteration, testing each model in flight and strengthening those
parts that were responsible for a crash. (The parts that never broke

were assumed to be too heavy, and were weakened.) More recently there
are Jjet planes in which substantial sections are made of fibered
material, to add strength without weight. Composites are increasingly
important for automobiles. Fortunately the optimum is sufficiently
flat that a rough approximation to the best design (which may require
curved fibers) is not much heavier than necessary.

The relaxation of this problem coincides with the convexification
of the cost functional, since the unknown ¢ 1is a scalar. For a

vector unknown (a stress tensor or a displacement in several dimensions)
that is no longer true. If If F(ux,uy,vx,vy) dxdy 1s nonconvex, we
cannot replace F by the largest convex functlon below it. 1In the
scalar case ff F(tx,ty) dxdy, we will see how oscillations in ¥

make the replacement correct; the infimum is not changed. 1In the
vector case those oscillations cannot achieve so great a cost reduction,
and the relaxed form becomes the quasiconvexification of the original

That vector case has been the focus of our recent work f11. 1t
can be approached as an application of the Tartar-Murat theory of
compensated compactness [2-3], whose goal 1s exactly what was required
above: to determine what equations and 1inequalities remain correct in
the weak limit, when osclllations 1ncrease 1n frequency and only thelr




averages are computable. COne such average leads to the effective
properties of a homogenized composite--the limiting case of oscilla-
tions in the material. The optimal composites achieve the bounds on

effective properties when the fractions of each material are prescribed
[4-6]. (We have also obtained those bounds independently of the
compensated compactness technigue, by verifylng that the quasiconvexi-
fication had been reached (7].) Then the optimal deslgn 1s found by
choosing at each point from the collection of optimal composltes. The
. local constructions are combined into a g£lobal construction which
withstands the imposed load and has minimum welght.

In thils paper we stay with the scalar problem, and give the
construction that Justifies convexification. It is comparable to the
"truss continuum” which appears first in the remarkable work of
Michell [8]. He discovered that the bars in an optimal truss form
a speclial orthogonal net, typified by pairs of spirals or by tangents
and involutes. For the geometry we rafer to Hill, Prager, Gelringer,
and Kachanov. Then Prager led the subject of optimal design into a
much wider class of applications, extending a sufficient condition
discovered by Mroz to test the optimallty of a proposed shape. Their
criterion requires a function with [grad u] = constant on the boundary;
we have found that function in analyzing the dual problem. In general
its gradient 1s constant over a region of positive measure--exactly
the region where the fiber density 1is between zeroc and one. This
generallzes the sharp line that Prager had hoped might mark out the
optimal design. The same poséibility was recognized in plate problems,
where numerical computations indicated an infinite sequence of
infinitely thin stiffeners. A survey of engineering applications
was given by Rozvany (9], and Dacorogna provided an exposition of the
theory of weak lower semlcontinuity [10}. We hope to contribute one
further note on the plate problem.

THors L1z Ll andliics lawmily i applicallions, more exclulng Duv

much more uncertain. Those are the designs that occur in biology. It

is natural to hope that our hearts are optimally deéigned, and our

bones, although the criteria for optimallity must be much more complicated
than minimum weight. 1In fact it 1s as much the problems as the solutions

that are unknown: What quantity is minimized, and what are the



constraints? In the heart muscle we find fibers that are wound in a
definite pattern, and in bones it has been observed for 100 years that
the trabecular flbers in the spongy part seem to be aligned with the
directions of maximum stress. This is known to orthopaedic surgeons
as Wolff's law. The growth or decay of bones depends directly on the
external loads, and there is a major effort to make this relation of
stress to morphology quantitative rather than qualitative (l1-12]. 1t

seems likely that optimal designs which are virtually impossible to

. manufacture have nevertheless been evolved.

The Design of the Butterfly

We return to the model problem of antiplane shear. The external
shearing force is o0.n = f, on the boundary of an infinite cylinder of
cross-section . All functions are independent of the axial variable
zZ, and the stress is in equilibrium:

acl 862
div 0 = = + =5 = O 1in the cylinder. (1)
The von Mises yield condition can be normalized to

19 = (o + 02)1/2 ¢ 1. (2)

Our problem is to find the largest subset of O 1in which g can be
zero. In that set no material 1is required.

We take Q to have the shape of a butterfly. The surface forces
are zero on the sloping boundaries and f = + w/f on the wing tips.
The net force on the boundary is zero, in agreement with
ff div o dxdy = O in the interior. Provided the sine of the corner
angles 1s not less than w/f, there exists a stress field o that
satisfies the requirements (1) and (2). (The existence is a problem
in plastic limit analysis {13].) 1In a region where the stress is
below the 1limit, it can be modified by any divergence-free field. It
1s natural to suppose that in the optimal design, the stress is either
at its maximum (where [o] = 1)} or its minimum (where o = O and the

material is replaced by a hole). That expectation is verified below,
but only in the limit of infinitely many holes. There are examples



in which a single hole 1s optimal, and |o] drops abruptly from 1
to O, but they are rare.
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FIG. 1. The butterfly.

There 1s a natural analogy with the flow of traffic. The con-
tinuity condition div o = O means that no cars disappear. The
constraint |eg] € 1 1imits the capacity. Across the centerline the
flow cannot exceed 2w, and that is exactly the flux f o.-n = 24(w/2)
through the edges. Therefore we must have the maximum possible stressg
o = (1,0) along the centerline. This is completely analogous to the
max flow-min cut theorem of network flow, and a continuous version of
that theorem [14)] shows that the required flow w/f can be achieved
with o] < 1.

We can remove part of Q only 1f no bottleneck is created.
Figure 2 illustrates one possibility--to channel the flow along the
boundary, leaving a wedge-shaped region of "stagnation" in the center
of each wing. If the remaining strips have width w then the flow 1is
still feasible; in terms of stresses, there is still an admissible .
Note that we take ¢.n = 0 on the boundary of such a hole; no flow
crosses it 1n the traffic analogy, and it supports no shear stress.
Near the center there are circulsr sectors of radius w. almost
indistingulishable from triangles in the figure, where the flow can
change direction; 1t passes horizontally through the centerline and
turns until it 1s parallel to the sloping boundary. The real difficulty
is at the far right, where the flow needs enough space to achieve a
uniform value of 6.n along the wing tip.
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FIG.2a. Wedge-shaped hole. FIG.2b. Peripheral holes.

A second possibility is to remove material along the boundary
and direct the traffic through the center. In this case (Figure 2)
the holes touch the boundary, which is permitted where f = 0. Again
it is at the far right, where the flow must reorganize 1tself to exit
correctly, that we have kept more space than necessary. Rougnly
speaking, we can continue to introduce holes as long as any arc from
the upper to the lower boundary is left with length 2w, and any arc
from the top or bottom to the vertical side remains long enocugh to
admit the traffic that must get through. On the other hand, a design
might achieve these minimum widths and not the minimum area. We could
start from 2a or 2b and reach s point where no more holes are
pPossible--but neither of the final designs would be optimal.

To make a better start, we can introduce holes that are more
nearly allgned with the direction of flow. That design needs less
space for adjustments at the boundary; the flow 1s close to the uniform
distribution required of o6.n. The more holes we use, the closer we
come to an optimal flow. 1In fact, we are approaching a design which is
entirely different from our initial experiments. In the limit, there
1s a density of material which varies from point to point and reaches
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created a new material with its own capacity c¢. More than that, the
final result 1s totally anisotroplic. It 1s precisely analogous to a
composite material produced by laying down a family of one-dimensionsal
fibers. They have tremendous strength, but only in the direction of
the fibers.




This conclusion, that there exists no optimal shape of an
ordinary kind, will not surprise a specialist in the homogenization
of domains. There it is the periodic case which is best understood;
holes of fixed shape, and of size 1/n, produce in the (weak) 1limit
a material with properties entirely different from the original.

In our case the holes are increasingly thin and the domaln becomes
foliated, reducing the strength to the minimum required.

The Solutlon in a Square

The first step toward the optimal design is the solution of a
local problem--tc replace a uniform stress that 1is below the limit
f[o] =1 by a stress distribution that is zero as often as possible.
The reglon is a small square, but we may take it to be the square
~1 < x,y < 1. The forces on the left and right sides are o.n = + f
The simplest solution is o = (fO,O), a uniform tension. It is
typical of elastic solutions; it minimizes [/ lo1° dxdy, it is the
gradient of a harmonic function, but its support is the whole square.
Therefore we look for other solutions.

In principle the total force 2fo on the sides could be

o°

balanced by o = (1,0} in a band of width 2f, through the center
of the square. 1In this case 0 1is nonzero over an area of 4f .

0
That is the minimum possible. But this stress distribution is

entirely wrong at the boundary--it has o.n equal to +1 at the
band and zerc outside it. We need a more careful construction irf
g.n is to be uniform.

The optimum 1is approached by more and thinner bands. We use N
bands of height Efo/(N-l), distributed evenly over the square. The
stress 1inside them is ¢ = ((N-1)/N,C). Each band will end at some
distance d from the edges of the sauara. and tha rael nwahlem 4c
to modify ¢ 1in that "boundary layer." Actually that problem on a
small scale 1s identical to the butterfly problem on a larger scale--
to convert a high uniform stress at the centerline to a lower uniform
stress at the longer outside edge. The place of w 1is taken by
fo/(N-l), the place of £ 1is taken by 1/N, and the width L in



Fig. 1 1s now d.
One solution is to carry the force on stralght but sloping
fibers. The resulting stress distribution is

N1 1 /Ny
- )

N Y oFx (1+/N x)
The denominator is smallest at x = O and the numerator is largest at
y = 1/N, so that

ag

) . (3)

el < B2 1+ §) <2

The width d 1is determined by the boundary condition o.n = fo at
the right side:
N&l 1 - fO or d = -£~(§'l _ l)S.constant ) (4)
1+/H d /A Mo

This stress fleld o 1is also consistent with the uniform stress in
the band at the left side. (Across a line of discontinuity it is
only the normal stress ©0.n which must agree, and (N-1)/N 1is the
correct value.) The divergence of o 1is seen to be zero, either

by direct calculation or by recognizing that

- N-1 y
N 1+/N x

This "stress function" is analogous to the "stream function" for

o = (*y,-vx) for ¥

fluids. It 1is constant on the llnes of stress, which cross the layer
of width d. The upper line goes from x =0, y = f /N-1 (the top
of the band) to x =d, ¥y = 1/N (at the outer boundary). Thus the
proposed stress field, partly concentrated in N bands, partly
distributed in the boundary layer according to (3), and partly zero,
18 admissible.

The area of N strips of height 2f0/(N-l), together with the
thin regions at the side, is not more than

2fo
2N =T+ 44 -» 4fo

In the limit, the cross-section therefore achieves the same area as



the earlier attempt with o = (1,0) --while keeping 0.n equal to

fo at the boundary. 1In fact the weak 1limit of the sequence N is
the elastic solution (fO,O), but that happens only in specilal cases.
What is more typical, and more important for the general case, 1s that
the fraction of area required is given by fo. Roughly speaking, a

uniform stress of magnitude [0{ can be replaced by stresses of unit
magnitude concentrated over a fraction |g| of the original area.

To reach a variational formulation of our original problem, we
extend this principle to an arbitrary domain . Suppose there exists
a stress O that satisfles the three conditions div ¢ = 0, o-n =7,
and |o| < 1. Locally, in a small square about the point (x,y),
we replace the given O by stresses like Oy ~-whlle retaining
Oy 'n =0.n on the boundary of the square. The rest of Q notices

N
no change. The new & is nonzero only in a fraction approaching

N
|o(x,y)| of the square around (x,y), and the same construction takes
Place throughout Q. Therefore the given o can be replaced by
stresses which require, in the limit, only the area If lo{x,y)| dxdy.

This is the relaxed functional mentioned in the introductiocn.

The Relaxed Problem

The minimum area of the support of o was originally described
as

inf jf 1[0#01 dxdy, subject to o.n =71, div ¢ = 0, }o| <1

In this form the integrand is 1 whenever the stress is nonzero and
material 1s needed. The magnitude of the stress is irrelevant (as long
as 1t does not exceed the yield stress: |ag] < 1). In the relaxed
problem the integrand 1is reduced to the magnitude |o]:

inf ff fe{x.¥v) | dxdv. subiect to a.n = f. Alv a = 0. lml ¢ 1.

—

Note that the solution o* to this relaxed problem is not optimal for

»

the original problem. The importance of ¢ is to indicate a minimizing

sequence for the original problem. The distinction comes in regions
where O < |o"| < 1, and the stress o¢* 1s replaced locally by the
construction that was carried out above--fibers which lie in the
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direction of o* and have density |[o*|. No replacement is needed

in regions where |¢*| = 1 or o = 0; those are full of material,

or empty. As N » «» 1in the construction, the fiber area approaches
the minimum that can be achieved and the stress field {which oscillates
between |6| = 1 4in the fibers and o = O 1in the holes) approaches
a weak limit. That minimum area is [ [0*| dxdy and that weak
limit is o*. '

We want to recognize the relaxed problem as the convexification

of the original. That is easy to do. The original integrand was O
when o =0, 1 when O0< |0 <1, and +» for |g| > 1. It was
nenconvex because of the jump from O to 1. The largest convex
function below it has that jump removed; 1t 1s equal to |o] for

o] < 1. The graph goes linearly between the points (0,0} and (1,1).
(It can still Jump to +® for [0] > 1 and remain convex.) The
effect of cur construction was to convexify the problem. That was

established for a wide class of nonconvex varlational problems by
Ekeland-Temam {14] in the scalar case and by the present authors [ 1 ]
in the vector case.

It remalns to solve the relaxed problem. Our earlier paper [13)
linked o +to the scalar stress function ¥, and outlined the solution.
A forthcoming article [15] will go farther. Here we give the main
idea.

Each divergence-free ¢ 1is connected to a stress function ¢
by o = (#y,—tx). The divergence is zero because vyx = *xy‘ The
boundary condition e.n = f 1s changed to ¥ = gs the ilndefinite
integral of f along the boundary. (It is single-valued because
¢ fds = 0.) The magnitude |ol 1is |9%|, and the problem becomes

W
min [[ |v¥#] dxdy subject to ¥ = g8 on OQ and |9v¢| < 1.

This 1s the least gradient nrohlem. econatrained hv ol <1 Tha
existence of an admissible ¥ --so that =g 1is compatible with

[v¢| < 1 --1is the limit analysis problem that is solved by a continuous
max flow-min cut theorem. The construction of the minimizing v -

whose gradlent, rotated through /2, 1s o --can be carried out
explicitly in many examples.
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In fact our construction in the "small butterfly problem,”
connecting the uniform stress (N-1)/N in the fiber to uniform
stress along the boundary, was optimal for that problem. It came
from a stress function ¢ that was constant on straight lines in
the region where [V§| < 1 --which in that problem was everywhere.

In the original butterfly problem, that solution is not optimal.
It is not even admissible. To achieve the boundary values
c.n = + w/f, which is at the extreme limit, we had to maintain the
maximum stress |[of = 1 along the centerline. There was no factor
(N-1)/N to keep |9v%| below one. There is a region near the center
of the optimal design (the solid region in Fig. 3) which 1is filled
with material. We can think of fibers of unit denslty, but they are
curved. 1In the main part of the wing they are straight, and the

stress decreases along the fiber until it satisfies o*.n = w/f at
the wing tip. There is no region in the butterfly with o* = 0.

FIG.3. Fibers in the optimal design.

This description can be made more precise. The boundary values
of ¥ are g = yw/f (the integral of o0.n) on the wing tips, and
g =+ w on the sloping edges of the butterfly. Suppose the fiber
that meets the boundary point (L,y) makes an angle & with the
horizontal. At the boundary, |o| cos 8 = w/f. At the solid center,
o] = 1. Where the line meets the solid center, it 1s tangent to
a circular arc of radius w - yw/£ around the boundary point on
the centerline. That determines the angle 8, and the fiber then

curves to follow the circular arc. On the straight fiber, the



reciprocal 1/}jo*| = 1//9%*| 1is a linear function of distance along
the line. Therefore we can finally determine o¥.
More important than these calculations is the form of the optimal

design. It looks strangely like a butterfly, for no clear reason.

The shear force on an infinite cylinder is not the ocne supported by

& real butterfly. But it does have the attractive geometrical

features--in this case a net of fibers and their orthogonals, in

whilch the fibers are straight lines 1in one region and the orthogonals
- are straight lines in the other--which we are happy to find in nature.

REFERENCES

1. R. V. Kohn and G. Strang, Optimal design and relaxation of
variational problems, I-III, Comm. Pure Appl. Math. 39, 1986, 113-182.

2. L. Tartar, Compensated compactness ang applications to partial
differential equations, in Nonlinear Analysis and Mechanics:
Heréot-Watt Symposium IV, R. J. Knops, ed., Pitman Press, London,
1879. '

3. F. Murat and L. Tartar, Calcul des variations et homogeneisation,
in Les Methcdes de l'Homogeneisation: Theorie et Applications en
Physique, Coll. de la Dir. des Etudes et Recherches de Elec. de
France, Eyrolles, Paris, 1985, pp. 319-370.

*. L. Tartar, Estimations fines des coefflcients homogénéisés, in
P. Kree, ed., Ennio DeGiorgi Colloguium, Pitman Press, London, 1983.

3. K. A. Lurie and A. V. Cherkaev, Exact estimates of conductivity of
composites, Proc. Roy. Soc. Edinburgh 9a, 13984, pp. 71-87.

6. R. Kohn and G. Milton, On bounding the effective conductivity of
anisotropic composltes, Homogenization and Effective Mcduli of
Materials and Media, J. Ericksen, D. Kinderlehrer, R. Keohn,

J. L. Lions, eds., Lecture Notes, Springer, 1986.

7. G. Strang, The optimal design of a two-way conductor, preprint.

A. G. M. Michell, The limits of economi of material in frame
structures, Phil. Mag. S6, Vol. 8, 190%, pp. 5839-537.

9. G. I. N. Rozvany, Structural layout theory--the present state of
knowledge, New Directions in Optimum Design, E. Atrek et al,
eds., John Wiley, 1984.

10. B. Dacorogna, Weak continuity and weak lower semicontinuity of
noniinear functionals, Lecture Notes in Math., 922, Springer-
Verlag, New York, 1982.



11.

12.

13.

14,

13.

W. C. Hayes, M. Snyder, B. Levine, and S. Ramaswamy, Stress-
morphology relationships in trabecular bone of the patells,
Finite Elements in Biomechanies, R. H. Gallagher et al., eds.,
John Wiley, 1982.

E. Cheal, Trabecular bone remodeling around implants, Mechanical
Engineering Thesis, M.I.T., 1986 .

G. Strang and R. Kohn, Optimal design of cylinders in shear,
The Mathematics of Finite Elements and Applications, J. Whiteman,
ed., Academic Press, 1982.

I. Ekeland and R. Temam, Convex Analysis and Variational Problems,

North~Holland, Amsterdam, 1976.

R. Kohn and G. Strang, The constrained least gradient problem in
optimal design, to appear.

3



