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Abstract

We are interested in variational problems of the form min [ W(Vu) dz, with W nonconvex.
The theory of relaxation allows one to calculate the minimum value, but it does not deter-
mine a well-defined “solution” since minimizing sequences are far from unique. A natural
idea for determining a solution is regularization, i.e. the addition of a higher order term
such as €|VVu|2. But what is the behavior of the regularized solution in the limit as ¢ — 0?
Little is known in general. Our recent work [19, 20, 21] discusses a particular problem of this
type, namely min,, —+; [ [ u? + €|uyy| drdy with various boundary conditions. The present
paper gives an expository overview of our methods and results.
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1 Introduction

This paper provides an expository review of our recent work [19, 20, 21]. The general setting
is as follows. We are concerned with nonconvex (and non-quasiconvex) variational problems
of the form

min /W(Vu)da:. (1)
Q

u=upato)
Such problems arise naturally in a variety of contexts, including structural optimization
and the modelling of martensitic phase transformation [3, 4, 17, 22].

Since W is assumed to be neither convex nor quasiconvex, the minimum in (1) may not
be achieved [9]. It is natural to be suspicious of a problem that “has no solution.” The
simplest way to restore existence is by regularization, i.e. by adding a term involving higher
derivatives:

min / W(Vu) + |VVul? dz . (2)
Q

u=upato)
This type of regularization is standard in the literature on coherent phase transformation,
see e.g. [15]. Another kind, not much different in practice, is the inclusion of surface energy
at phase interfaces, see e.g. [12].

There are two different approaches to this class of problems. The first, more traditional
one is to discard (1) as having no sense, and concentrate instead on (2). To make contact
with (1), one should then consider the behavior of the minimizer u, as € tends to zero. The
Euler-Lagrange equation is a fourth-order partial differential equation. As € — 0 there will
be a sequence of bifurcations, and one should follow the “principal branch,” i.e. the one
representing the minimum rather than a saddle point (or local minimum). This program is
conceptually simple, but hopelessly impractical except in one space dimension [5, 24].

A second, less traditional approach has been more successful in the multidimensional
context. It addresses the ¢ = 0 problem (1) directly, despite the possible nonexistence of
a minimizer. Its goal is simply to identify the minimum value — which certainly makes
sense — and to construct examples of minimizing sequences. That goal has been achieved
in a remarkable list of examples. Central to this approach is the “relaxation” of (1), a new
variational problem of the same type with W replaced by its “quasiconvexification,” see
e.g. [9, 10, 22, 23]. The case when u is scalar-valued is particularly simple, because in that
context the integrand of the relaxed problem is just the ordinary convexification of W [11].

Despite its success, the viewpoint of relaxation has limitations. Knowing the relaxed
problem provides some information about the “average character” of a minimizing sequence,
but it leaves a great deal of ambiguity concerning the fine-scale structure. This is less than
ideal for applications such as the modelling of martensitic phase transformation, where the
goal is to predict or explain specific microstructures.

The source of this ambiguity is not the method of relaxation, but rather the formulation
of the problem. Minimization of (1) simply does not determine the fine-scale structure of a
minimizing sequence. To determine such details one must include some kind of “selection
mechanism.” Within the context of energy minimization, we are thus obliged to consider a
perturbed problem such as (2).

But what, exactly, should be our goal? Seeking the “precise” fine-scale structure of a
minimizing sequence seems too ambitious: we don’t have a language suitable for describing
it. Moreover, it is natural to try and bootstrap from knowledge of the relaxed problem. In



our opinion, the first goal should be to evaluate the asymptotic behavior of the energy, to
principle order near € = 0. In other words, we seek an expansion of the form

min / W(Vu) + E|VVul? de = Ey+ C + - -- . 3)
u=upatdf? JO

The constant Ej is already known: it is the minimum value of the unperturbed problem

(1), provided by the method of relaxation. The crucial new information is the exponent -,

the correction due to the presence of a regularization. Knowing the value of v does not tell

us the details of the microstructure. But it provides a criterion for distinguishing between

minimizing sequences which are efficient and those which are not.

One might think that the next goal, after finding ~, should be to find the constant C,
then to give further terms in an asymptotic expansion for the energy. Achieving this seems
to be difficult. The example discussed below suggests a different goal. Besides finding v, we
are able to identify the spatial distribution of the energy. This leads to a fairly unambiguous
picture of the minimizer u..

The program just summarized is ambitious, and we are far from being able to execute
it in general. What we have been been able to achieve is a fairly complete understanding
of one simple example.

2 A nonconvex variational problem and its relaxation

Prior to regularization, our example is the variational problem

1 L
u:é&%gzo/o /0 ul + )\(uz —1)? dady . (4)
The unknown w is a scalar-valued function defined on the rectangle [0, L] x [0,1]. The pa-
rameter \ is positive and fixed. The integrand W (Vu) = u? +)\(u§ —1)? prefers Vu = (0,1)
or (0,—1). This preference is “incompatible” with the boundary condition u =0 at = = 0.

It is easy to see that the minimum value of (4) is 0, and that this minimum is not
achieved. To give an example of a minimizing sequence, consider any h > 0. On the
subrectangle h < x < L we take u, to be a function of y alone, switching between wu, = 1
and up, = —1 in layers of thickness h. In the strip 0 < x < h we may take u;, piecewise
linear, interpolating between uy (h, -) and the desired boundary value u(0,-) = 0. This test
function has energy of order h, tending linearly to zero as h — 0.

The associated relaxed problem is

1 /L
u:(])a;%%czo/o /0 uZ + AP (uy) dzdy | (5)
where ®(t) is the convexification of (t2 — 1)2. Notice that ®(¢) = 0 for |t| < 1. It is easy
to see that the unique minimizer of (5) is the function u(z,y) = 0. It follows that every
minimizing sequence {u, } for (4) converges weakly to zero. For such a sequence, Vu,, must
oscillate between the preferred values (0,+1), taking each value on volume fraction 50%.
More precisely, the Young measure limit of Vu, is the sum of two Dirac masses, one at
(0,1) and the other at (0,—1), each with mass 1/2. (See e.g. [2] or [26] for a discussion of
Young measures.)



We shall also have use for the analogue of (4) with inhomogeneous boundary conditions
on the left and right sides of the rectangle:

1 L
min / / u? + Mu2 — 1) dady . (6)
u=uo(y)at =0 0 JO
)

u=u1(y)at x=L

If the boundary functions uy and u; satisfy |ug,| < 1 and |ug,| < 1 then it is easy to
calculate the value of the minimum using the method of relaxation. Indeed, the relaxed
problem is the analogue of (5) with the new boundary condition:

1 L
min / / uZ + AP (uy) dedy .
0o Jo

u=ug(y)at =0
u=u1(y)at a=L

The unique minimizer of the relaxed problem is easily seen to be the linear interpolant

X

w(a,y) = Tr(y) + (1= Fhuoly)

It has |usy| < 1, so ®(uyy) = 0. The minimum value of (6) is therefore

/01 /OL(U*)?C dl‘dy — %Al |u1(y) — uo(y)|2 dy ) (7)

It is often convenient to focus on the limiting case A\ — oco. In this limit the “penalty”
A(u? —1)? becomes the constraint |u,| = 1. The A = oo version of (4) is thus

)
1 L
min / / u? dedy . (8)
u=0at z=0 70 JO

uy==x1la.e.

We like (8) because it is basically geometric in character. To specify an admissible test
function, one has only to give the sets where u, = 1 and u, = —1, and the values of u along
a single horizontal line; the function u(x,y) is then fully determined, by integration in y.
The test functions admissible for the constrained problem (8) are naturally also admissible
for the unconstrained problem (4). We believe that minimizing sequences constructed in
the constrained setting will generally also be efficient in the unconstrained setting.

It is easy to relax the constrained problem, either by passing to the limit A — oo in
(5) or else by convexifying the constraint set u, = £1. In particular, the relaxation of the
constrained problem with boundary condition u = ug(y) at z =0, u = u1(y) at z = L is

1 pL
min / / ul dady . 9)
u=ug(y)at z=0 “0 7O

u=u(y)at x=L
Juy|<1

The boundary data must satisfy |ug,| < 1 and |ui,| < 1, to be consistent with the constraint
|uy| < 1. The minimizer is again the linear interpolant u,, and the minimum of value of
the relaxed problem is again (7).



3 Regularization

Our goal is to understand the role of regularization in determining minimizing sequences
for the nonconvex problem (4) or its constrained analogue (8).

One could regularize (4) by adding a term €2|VVu|?, as suggested in the introduction.
We can make do with less, however: it suffices to add just a term involving uzy:

1 L
uz(})ﬂ;%l;:o/o /0 uZ + )\(ui —1)%+ ezuzy dxdy . (10)
The rigorous justification for considering (10) a “regularization” of (4) is the fact that (10)
achieves its minimum, for any fixed € > 0 [20]. As heuristic justification, we observe that
u, has no incentive to oscillate, while u, likes to jump between +1 and —1. The role of
the extra term e2u2y is to penalize such jumps. We believe that the inclusion of additional
terms in uZ, and ugy would not change the minimizers significantly. Indeed, the “interfaces”
(where u, changes from +1 to —1) must be approximately horizontal, if u, is to remain
small. This should force u,, and u,, to be much smaller than u,, on average.

The regularization of the constrained problem (8) must be done differently. In view of
its geometric character, the natural thing is to add some kind of “surface energy.” The

simplest choice from the analytical viewpoint is

1 (L
min / / uZ + €|uy,| drdy . (11)
u=0at z=0 Y0 0

uy==xla.e.

The term |uy,| in (11) is a singular measure supported on the “interface” where u, changes
from 1 to —1. It is in effect an anisotropic surface energy: [ [ |uy,| is twice the length of
the vertical projection of the interface. The rigorous justification of (11) is, once again, the
existence of minimizers [20].

We believe that the minimizers of (10) resemble those of (11), in the limit as ¢ — 0. As
evidence, we observe that if u, makes a transition from —1 to 41 in a strip yo—9 < y < yo+6,
then along any vertical line x = xg

yo+94 Yyo+6 yo-+6
/ )\(uz —1)2 4+ e2u§y dy > / 2\/Xe|u§ — 1 uyy| dy = / Co€|uyy| dy
yo—9 yo—0 Yyo—0

with ¢g = VX [T [t? — 1| dt. This inequality becomes sharp if €|u,,| = \/X|u§ — 1], ie. if uy
has the proper profile in the layer. It follows that if u is locally a function of y alone, then
(11) with e replaced by cge gives a sharp lower bound for (10). Our minimizers will not be
functions of y alone, but their xt—dependence will be relatively weak, so we still expect this
correspondence between (10) and (11) to be approximately valid.

The rigorous theory presented in [20] and summarized below is primarily concerned with
the constrained problem (11). It is also possible to address the unconstrained problem (10)
using similar methods; that will be presented elsewhere.



4 Asymptotic behavior of the minimum value

According to the viewpoint explained above, the first task is to evaluate the minimum value
of the energy as a function of e. Since the relaxed problem has minimum energy zero, we
expect a relation of the form

minimum energy ~ Ce” (12)

for either (10) or (11).

In Section 2 we described a minimizing sequence for (4), using piecewise linear uj, which
depend only on y except in a layer near x = 0. These functions cannot be used directly
for (10), because u,, is singular at the edges of the “pieces.” But that defect is easily fixed
by introducing boundary layers of width approximately e. Taking A = 1 for simplicity, one
finds that the resulting energy is of order h + eL/h. Minimization with respect to h yields
h ~ V€L, and an energy of order ¢'/2L/2,

The preceding construction suggests that v = 1/2 in (12). This is wrong. As we
shall explain shortly, the correct exponent 7 is not 1/2 but rather 2/3. In particular, the
minimizing sequence u, selected by the regularization 62\uyy\2 is rather different from the
one described above.

It is easy to see what is wrong with uy. The source of the spatial oscillations is the
incompatibility between the preferred gradients u, = £1 and the boundary condition u = 0
at £ = 0. Far from the boundary, however, there is no need for such fine oscillations, and
they cost a lot of “regularization energy”. So it is better for the oscillations to coarsen as x
increases. The coarsening costs some “bulk energy,” since u, can no longer be exactly zero.
But the savings in “regularization energy” is sufficient to make up for this cost.

Let us describe a better test function v, working for simplicity with the constrained
problem (11) rather than (10). We suppose that along each line z = constant, the graph of
v(z,-) is a (more or less) regular sawtooth with v, = &1 and period h(z). Then the typical
size of v(z,y) is h(z), so v, is of order h,. The energy of v is therefore

1 L L
/ / uZ + eluy,| ~ / h: e dx . (13)
0 Jo 0
We require h = 0 at x = 0, to accommodate the boundary condition on u. The choice
h(z) = ce*/322/3 (14)

makes the two terms h2 and eh~! scale similarly, and it leads to an energy of order €23 LL/3,
(The choice (14) is not optimal, i.e. it does not minimize the right hand side of (13), but it
suffices to get the optimal scaling law for the energy.) The preceding discussion resembles
one used by Hubert in a different context [16]. It is admittedly somewhat heuristic; see [19]
for a more detailed construction. The power law (14) suggests that at distance z = ¢ from
the left hand boundary, a minimizer should have roughly ¢~1/3¢=2/3 transitions between
uy = —1 and u, = +1. The construction in [19] achieves this through spatially self-similar
branching.

Specific test functions can only give upper bounds on the energy, hence lower bounds on
the exponent . Our construction shows that the energy can be made as small as C'e2/3L1/3,
i.e. that v > 2/3. Might there be other constructions which would give lower values of the
energy (larger values of v)7? The answer is no. This is the content of the following result:



Theorem 1 There exists a positive constant C' with the following property: for any function
uw(z,y) withu =0 at x =0 and u, = £1 almost everywhere,

1 L
/ / U2 + eluy,| dedy > CBLY3
0o Jo

A rigorous proof will be found in [20]. Here we give just the idea. Consider any function
u(x,y) satisfying the hypotheses of the theorem. Since u, = £1, the restriction of u to any
line z = constant has a graph which looks like a (not necessarily regular) sawtooth. Let
N(z) be the number of “teeth”. If N(x) is uniformly large then there is a lot of “surface
energy,” i.e. € [|uy,|drdy = 2¢ [ N(x)dx is large. Suppose on the other hand that N(x)
is small for some xy. Then the function y — u(zg,y) is a sawtooth function with few teeth,
so it must make rather large excursions from 0; thus fol u?(xg,y) dy is large. But then it
follows that there is a lot of “bulk energy:” if w = 0 at £ = 0 and w is large in L? at
x = x0, then [ [u2dxzdy must be large. In summary, if the “surface energy” [ [ €|uy,| is
small then the “bulk energy” [ [u?2 is large. Quantifying this argument leads directly to
the conclusion of Theorem 1.

5 Spatial distribution of the energy

It is natural to conjecture that the minimizer of (11) resembles the test function v con-
structed in Section 4. We cannot prove this in full, but we can show that the spatial
distribution of the energy is roughly as suggested by the construction:

Theorem 2 Let u = ue achieve the minimum of (11). Then there is a constant C such
that for any £ € (0,L),

1 pf
/ / u2 + e|uyy| drdy < CeB3e/3 (15)
o Jo
also, there exists another constant ¢ such that for any ¢ € (0, L),
1
/ (Ui + €luyy|) (¢, y) dy > ce?/B23 (16)
0

Theorems 1 and 2 are very different: the former is an assertion about any function w
which is admissible for (11); the latter is an assertion about the function u, which achieves
the minimum. It is thus natural that the proof of Theorem 2 should depend on the use of a
suitable comparison function. We sketch the main ingredients, referring to [20] for details.

The first step is to compare © with a test function of the form

P u forax >V
)l w forz </,

where w satisfies w, = £1 a.e. and w = u at x = £. Such a comparison yields

1t 1 e
/ / U2 + e|uyy| dedy < / / w2 + e|wyy| dzdy . (17)
0 Jo 0 Jo

To be of use, w should make the right hand side as small as possible. This is the role of:



Lemma 3 For any 0 > 0, there exists w(x,y) satisfying w(0,y) = 0, w(l,y) = u(l,y),
wy = £1 a.e., and

1 L 1 1
I/ W+ chuy | drdy < 0 [ ute P dy -+ ol (18)

The estimate (18) is consistent with our general program. Setting 6 = 0 in the first term
gives the minimum value of the associated relaxed problem, a special case of (9). The
second term is the correction due to surface energy, and it satisfies the same scaling law
as in Theorem 1. Thus the lemma suggests that the exponent v may be insensitive to the
boundary condition; we shall return to this later, in Section 8.

Continuing the argument for Theorem 2, we use (17), (18), and the elementary inequality

1 1 1 re
—/ uz(f,y)dyé/ / u? dady
¢ 0 0 JO

1 rl 1 pt
/ / uZ + e|uyy| dedy < (1+96) / / u? dady + Cse/30'3 (19)
0o Jo 0o Jo

to see that

At this point we have a problem. The standard idea would be to absorb the term
(1 +6) [u2 into the left hand side. This appears to fail, because the corresponding term
on the left has only a coefficient of 1. What saves us is a sort of “equipartition of energy,”
whereby the two terms on the left hand side of (19) are roughly comparable in magnitude:

Lemma 4 If u is any stationary point for (11), then

d 1
= | ) @) dy =0 (20)
x Jo

This is the conservation law associated to translation invariance in x. A similar relation
holds for stationary points of (10): they must satisfy

1
%/0 ul(z,y) — (A(ufj — 1)+ e2u§y) (z,y)dy =0 . (21)

The proof of (21) is utterly elementary: just multiply the Euler-Lagrange equation for (10)
by u,, integrate in y, then integrate by parts. The proof of (20) is a little more techni-
cal, since the Euler-Lagrange equation for (11) is awkward to formulate. The successful
argument is based on variations of the form t — wu(z + té(x), y).

We make use of (20) as follows. Let ¢y be the value of

1 1
/ ui dy —/ €|uyy| dy
0 0

which is independent of x. If w is a minimizer rather than just a stationary point, then
Theorem 1 gives

1 L 1 L
/ / u? dedy < CE¥PLY? / / €|tyy| dzdy < CEPLY?
0 Jo 0o Jo



and it follows that |co| < Ce?/3L~2/3. Therefore we have

1 e 1 e
/ / uldedy = / / €|uyy| dedy + col
0 Jo 0 Jo

1 e
< / / €|uyy| drdy + Ce3 M3
0o Jo

for any ¢ < L. Combining this result with (19) we get

1 1 1
//u +e\uyylda:dy<ié// uZ dedy + +5/ / eluyy| dedy + Ce2/301/3
0

which clearly implies (15).

Given (15), the second assertion (16) is relatively easy. The argument used for Theo-
rem 1 shows that if there is little “surface energy” at x = f then there must be a lot of
“bulk energy” in the rectangle 0 < = < ¢. But we know from (15) that the bulk energy
fol OZ u? dxdy is small. So the surface energy fol €|uyy|(¢,y) dy must be large. Quantification
of this idea leads to

1
| dunl gy dy = e, (22)

which clearly implies (16). Our sketch of the proof of Theorem 2 is now complete.

6 Convergence rate

Since u = 0 is the unique solution of the relaxed problem, it is obvious that the minimizers
of the regularized problem must tend to 0 in L? as € — 0. Our results yield a precise rate
for this convergence:

Theorem 5 There are constants ¢ and C with the following property: if u = ue achieves
the minimum of (11) with € sufficiently small, then

ce?BLT3 < / / (z,y)dxdy < CEPBLB

Proof: For the upper bound we begin with the elementary elementary inequality

1 1 4
[ weway<e [ [y,
0 0 0

which holds for any 0 < ¢ < L and any function u(z,y) with u = 0 at x = 0. If u minimizes
(11) then the right hand side is controlled by (15), and it follows that fo ) dy <
Ce2/3¢4/3 . Integration in x leads to the desired upper bound on [ [u?dzdy.

For the lower bound, we recall that y — u(z,y) is a “sawtooth” function with slopes
+1. If the L? norm is small then there must be many “teeth,” resulting in a lot of surface
energy. We quantify this as follows. Let N(x) be the number of transitions at x, i.e. the
number of times that y — w,(z,y) changes sign. One can show (see Lemma 2.7 of [20])
that

[y = @) + 1)

9



Integration in x and an application of Jensen’s inequality yields

L/ / (x,y)dxdy > C%/(]L(N(w)Jrl)—zdw
1 (L -2
C<f/o N(x)dw—|—1> )

/OLN(l’)dZL' = // [tyy| dxdy

< Ce VBB

v

But

by Theorem 1. If € is small then this gives
L/ x)dr+1< Ce V2L 723

and we conclude that
L/ / (z,y) dxdy > Ce3LA3

This is equivalent to the desired lower bound.

Notice that in proving Theorem 5, we established somewhat more. We actually obtained
an upper bound on [u?dy for every x. We suppose the analogous pointwise lower bound
should be true, but we do not have a proof. However, by using Theorem 2 one can give a
similar lower bound on fol Oé u? dxdy for any 0 < ¢ < L.

7 Soft rather than hard boundary condition

In our examples (10)—(11), minimizers have fine scale structure because the boundary con-
dition v = 0 at x = 0 is incompatible with the preferred gradients Vu = (0, £1). For the
application to twinning in martensite, the “hard” boundary condition u = 0 is not very
realistic. The true physical boundary condition is “softer,” i.e. it involves a penalization of
|u| at the boundary. We argue in [19] that the variational problem

mln / / U 4 €|uy,| drdy + 3 (/ u?(0,y) dy) v (23)

provides a reasonable model. Note that (11) is just the formal limit of (23) as 8 — oc.
The test function v constructed in Section 4 is also admissible for the penalized functional
(23), and it shows that
min (23) < Ce2/3LV3

regardless of the value of 3. But now a test function similar to the uy of Section 3 can also
be used, and it leads to the conclusion

min (23) < CBY2 212

10



Clearly either estimate can be stronger, depending on how 3 compares with (e/ L)l/ 3,

We believe that what happens is this. If 3 < (¢/L)Y? then the minimizer of (23) is
more or less independent of x, i.e. it resembles uj,. As [ increases with €/L held fixed,
there will be a first “twin—branching” bifurcation, then another, and so forth. In the limit
8 > (E/L)l/ 3 the minimizer accumulates increasingly complicated structure, and comes
to resemble the test function v described in Section 4 for the hard boundary condition.
While we cannot prove that this is the right picture, we prove in [20] that our constructions
correctly estimate the minimum energy for all values of G:

Theorem 6 For any > 0, the minimum value of (23) is bounded above and below by a
constant times min{e?/3L1/3 | pl/2/201/2}

8 Other boundary conditions

Our model problems (10)—(11) are special, in that the associated relaxed problems have
minimum energy 0. What about other boundary conditions, for which the energy stays
bounded away from zero as ¢ — 07 We have not studied this question systematically, but

we have considered in some detail the boundary condition v = —y at x = 0, u = 4y at
= L:
1 L
min / / uZ + e|uyy| dedy . (24)
u=—yatz=0 70 /O
u=+yatex=L
|luy|==%1la.e.

This example is interesting, because neither end condition alone is incompatible with the

energy. Rather, refinement is forced by the interaction of two end conditions. The solution

of the associated relaxed problem (9) is ug(x,y) = (2%’ —1)y, which has energy [ [u3, = 3%.

The Young measure limit of any minimizing sequence has mass ¥ at Vu = (0,1) and mass
1— 7 at Vu=(0,-1).
As explained in the introduction, we expect a result of the form

4
min (24) ~ 3 +C€e’

for the regularized problem. It turns out that the value of ~ is still 2/3. Thus, the correction
due to regularization seems to be rather insensitive to the specific choice of boundary
conditions.

Theorem 7 There are constants ¢ and C such that
ce2/3 /3 < min (24) — ?jiL < Ce3p /3
for € sufficiently close to 0.

The proof will be given in [21]. We also have a result on the L? convergence rate,
analogous to that of Theorem 5: if u, achieves the minimum of (24) and ug solves the
relaxed problem, then

1 L
2B < / / lue — u0|2 dxdy < Ce2BL3
0o Jo

11



9 Further directions

These examples represent just the bare beginnings of a theory. We comment briefly on some
recent, related work and on directions which may be ripe for analysis:

Scalar problems with three or more preferred gradients.

Our W (Vu) = u2 + /\(ug — 1)2 prefers just two gradients, Vu = (0,£1). What about
other choices of W, which prefer three or more possible values of Vu? We expect the answer
to depend on whether the unregularized problem achieves its minimum or not. If it does,
then minimizing sequences should develop microstructure only on a lower-dimensional set
(e.g. mnear the boundary); this would surely be reflected in the correction due to surface
energy. For affine boundary conditions, we know from the work of and Cellina [6, 7] and
Friesecke [13] whether or not the unregularized problem achieves its minimum. Chipot and
Miiller have recently analyzed the convergence of a finite element minimization scheme [8];
the effect of finite mesh size h is similar to that of nonzero surface energy e (both parameters
have the dimensions of length, and serve to set a length scale for the microstructure).
Swart and Holmes did careful numerical simulations of viscoelastodynamics, which provide
examples of (possibly local) minimizers for problems such as (4); see [25].

It seems to make a difference whether W (Vu) prefers finitely many gradients or a
continuum of possible values. A simple example of the latter type is W (Vu) = (|Vu|? —1)2,
which prefers |Vu| = 1. Such an integrand was considered by Aviles and Giga in connection
with the modelling of smectic liquid crystals [1]. The same type of integrand has arisen
in the recent work of Gioia and Ortiz on the blistering of thin films [14]. The latter work
suggests a possible connection between the limit of small surface energy and the theory of
viscosity solutions. So far, however, we know of no rigorous result in that direction.

Vector-valued problems

If u is vector-valued rather than scalar-valued, then relaxation is no longer the same as
convexification and whole new phenomena arise. A typical example is

14+ |Vul? if Vu#£0
W(Vu) = { 0 if Vo = 0, (25)

with u : IR? — IR%. The relaxation was computed explicitly by Kohn and Strang in [22],
where one also finds an interpretation of (25) in terms of optimal design. For some boundary
conditions — for example, if u(x) = x at 02 — the variational problem [, W (Vu)dx has both
generalized solutions (obtained, for example, “sequential lamination”) and classical ones
(obtained, for example, by the “concentric sphere construction”). We expect that the effect
of regularization will be to prefer a classical solution, but this has yet to be proved. Much
the same problem arises in the modelling of coherent precipitates; see [18] for a discussion
of elastic energy minimization in that setting.
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