7 Kinetic Theory

The total number of molecules striking 3A in time 8¢ is given by:

5 0 /2 21
N = \ quq\ de sin 0 do Ny . (28)
0 0 0
Again, assuming the gas is homogeneous in space:
Ny = 8Vnf(v,t) = 8Adt v cos B nf(v,t) (29)

and the total number is given by:
B o n/2 2n
N = \ emaq\ de sin do 8Adt v cos B nf(v,t)
0 0 0
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Pdo \ d6 sin 8 cos \o do f(v,t) . (30)
0 0

If we further assume the system is in thermal equilibrium, then we can use
Eq. (23) and evaluate the remaining integrals (see Problem 7.2) to obtain:

N = adAdt (1)

where g, the rate of effusion, is given by:

1/2
a=mn Aw|ﬂv , (32)
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and is the number of particles that escape from a hole in a wall enclosing a
sample per unit time per unit area.

7.2.2
Mean-Free Path

Having considered collisions between molecules and a wall we now move on
to consider binary collisions between molecules. The problem we address was
formulated by Clausius [9]. In looking at the kinetics of dilute gases, one finds
that disturbances are not communicated across a sample at thermal speeds. If
one had thermal ballistic motion, disturbances would travel across a sample
with speed v} = kT/m. Instead, thermal transport is much slower due to
collisions. Collisions lead to a type of random walk of particles across the
sample, with steps on the order of the mean-free path — the average distance
between collisions. Thus we have diffusion as opposed to ballistic motion. We
can estimate this mean-free path using elementary geometrical and probabili-
stic arguments.

Let us assume that the range of interactions between particles is ry and
is short compared to the distance between molecules in the gas. To a first
approximation we can think of the molecules as spheres of diameter 7.
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Fig. 7.2 Collision cylinder for particles with velocities v and v; that
collide during a time interval &¢.

We carry out this determination of the mean-free path using the idea of a
collision cylinder. Suppose a molecule with velocity v collides with another
particle with velocity v; at time t. We describe the collision by choosing a
coordinate system (see Fig. 7.2) with its origin at the center of the first mo-
lecule, and the z-axis is drawn in the direction of the relative velocity vector
vy — v. The molecules collide with each other only if the distance between
their centers is smaller than ry. This means that the center of the molecule
with velocity v; must at time t lie inside the cylinder if a collision is to take
place in the succeeding time interval 8t. The height of this collision cylinder
(see Fig. 7.2) is:

h=|vy—v|dt . (33)

The cross sectional area is simply 773, so the volume of the collision cylinder
is:

Ve = mrgh = nrlvy — v|dt . (34)

We can use the collision cylinder to compute the number of binary collisions
that take place in a small column of gas in time 8t between molecules with
velocity v and vy. In a small volume d*x in the gas, there are f(x, v, Sama d3v
molecules with velocity v located at position x. To each of these molecules the-
re is attached a collision cylinder appropriate for collisions with molecules of
velocity v; within a time interval 8t. The number of such collision cylinders is
therefore f(x, v, t)d*x d>v. The total volume occupied by the collision cylinder
is the number of cylinders times the volume per cylinder:

VI = f(x,v,t)dx d® V. = f(x,v,t)dx d°v nrd|vy — v[St . (35)

To compute the number of (v, v;) collisions, we must compute the number of
molecules with velocity v that are present in collision cylinders at the begin-
ning of the time interval. Going forward we assume that the gas is sufficiently
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dilute that collision cylinders contain at most one molecule with velocity v;
and these molecules lead to (v, v;) collisions.

The number of molecules with velocity v; present in the (v, v;) collision
cylinders at the instant ¢, N, is equal to the numbers of v;-molecules per unit
volume,

N(v1) = f(x,vq,t) d%v; (36)
multiplied by the total volume, VT, of (v, v;) cylinders:
Nr=N(v)V] . (37)

In summary the number of collisions occurring within time interval 8t bet-
ween molecules in the velocity range v to v + dv and the molecules in the
range v, to vi + dv; in volume d°x of gas centered about position x is given
by:

Nr = f(x,vi,t) @0y f(x, v, t)dx d>0 nrd|vy — v|5t
= f(x,v,t)f(x, v, )mrd|vi — v| 0 d®v, d3x 8t . (38)

Notice that this expression is symmetric in v and v, [10].

The total number of collisions suffered by molecules of velocity v in spatial
volume d®x in time 8t comes from integrating over the velocities of all their
collision partners:

N(x,v,t) d®v d®x5t
= F(x,v, Hnrdd®xdt d \ Poy f(x v, Dlvi—v] . (39)

The total number of collisions suffered by molecules of all velocities in spatial
volume d°x and in time 8t is given by:

N(x,t)d>xdt = mwamw\ amqﬁww\ vy f(x,v1,t)|vqy — v| . (40)
Assuming the gas is homogeneous in space, where Eq. (19) holds, we have:
N(v,t) = n2f(v, t)ur2 \ PBoy f(vi,t)|vi — v 1)
and the number of collisions per unit volume per unit time is:
N(t) = \ PoN(v, )
= :Nam\ d2of(v,t) \ d>vy f(vy, t)|vy —v| . (42)
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The average collision rate v(t) is the number of collisions per unit volume per
unit time divided by the number of molecules per unit volume,

v(t) = E = xa\w\, d>vf(v,t) \. d®v, flvy, t)|vy —v| . (43)

n
The average time between collisions, the mean-free time, is:
t=1/v . (44)
The mean-free path is then given by:
{=ut , (45)

where u is the average speed:

u= (o) = \ Poof(v,t) . (46)

If we further restrict ourselves to thermal equilibrium then v(t) is independent
of time and f(v) is the Maxwell velocity distribution. In Problem 7.3 we show
that the average speed is given by:

1/2
m
The collision rate in equilibrium can then be evaluated using:
3
v = nnr3 Amqﬁﬂv \ awe\ dvy m|mms€u+ew“5 —v| . (48)

The remaining integrals are evaluated in Problem 7.4, with the result:

qnwm.u._
m

tTl=v= »:ww

(49)

The mean-free path is given by:

u 1
=== 50
v ,\Mw__ﬂ,w )

As expected the mean-free path is inversely proportional to density and mo-
lecular diameter.

723
Boltzmann Equation: Kinematics

The elementary ideas developed in the previous sections makes the assump-
tion that we know the singlet distribution function in equilibrium. Here, we
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develop some of the ideas we need to determine the singlet distribution under
a variety of nonequilibrium conditions. The first step is to look at the equation
of motion for the phase-space density. In Chapter 5 we established that:

2fpt =iLfxpt) 61)
where L is the Liouville operator. Going further, we found that:
- -Vy 2 o
2 Foup ) = =B 20 p) + i 1) 62)

where, for pair interactions, the nonlinear interaction contribution is given by:

fixpt) = - [ @udpilix—x,pp0)fGap)f(xp) . 63
where we define the interaction part of the two-body Liouville operator,

It is left to Problem 7.5 to show that if we have an external force Fr that occurs
in Newton’s law in the form:

dpi(t) -
— = =Fe(npit)— ), Vi V(-1 , (55)
dt D=1

then the equation of motion for the phase-space density takes the form:

W\Ax\?mv = I%me\wkv\du.mﬂm?@?&)ﬁ?g

+hixp1)
If we have uniform applied electric and magnetic fields then:
Fr=gE+ m?x B)
and because:
Vp-(pxB)=0,
-then we have the equation of motion:

m ﬁ.dk
xt

+Fe(x,p,t)- Vp| f(xp,t) = fi(x,p,t)

After taking the average over a nonequilibrium ensemble we have:

%m+ m.sdx + Fe(x,p.t) - Vp| f(x,p,t) = fi(x, p.t) .
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7.24
Boltzmann Collision Integral

Let us turn next to the treatment of collisions in the Boltzmann kinetic equati-
on. The effect of intermolecular collisions is to modify the count of molecules
entering and leaving the region in phase space x to x + dx and v to v + dv
in time interval 6t. The number of particles in this volume is effected by col-
lisions in two ways. Some streaming molecules are kicked out while others
are knocked into the volume of interest. We can write the contribution to the
kinetic equation in the form:

fi(x, p, )d>xd®vdt = (], — J_)d*xd0dt . (61)

This is the net change in the number of particles in d>xd>v8t due to collisions.
In this equation J;d%xd%vdt is the number of particles entering the region of
phase space in time &t via collisions, and [_d®xd®v8t the number of particles
leaving the region of phase space in time 8t via collisions.

Before determining [ and ] we need some background on two-body dy-
namics. We assume we have elastic collisions between two particles of equal
mass 11 as shown schematically in Fig. 7.3. We assume that well before the col-
lision at time  at position x, the particles have velocities v; and v,. Well after
the collision, the particles have the final velocities v} and v). These asymptotic
velocities are connected by conservation of momentum and kinetic energy (for
short-ranged interactions):

vi+vy = i + axm (62)

vi+vi=(v])?+ (vy)? . (63)
If we introduce center of mass (COM) variables:

V= W? +vy) (64)

X
.:/

Va

Fig. 7.3 Before and after collision kinematics for two particles with
velocities vy and v, before the collision and v} and v} after the collision.
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v=vi—Vy , (65)
then clearly:
v=vVv'. (66)
Since we have the inverse relations:

vi=V+= (67)

§u<|m \ (68)

we have for conservation of kinetic energy:

1

<w+<wnm<w+m

1
vi=2(V) +5(v)? . (69)
Since V2 = (V)2 we have that the relative speed is unchanged by the collisi-
on: v2 = (v/)2. The angle between v and v’ is defined by:
v-v =2%cos® . (70)

If we limit ourselves at first to the case of hard spheres, then we have the
collision diagram shown in Fig. 7.4. We can then connect the before and after
velocities in the COM using;:

V=v-2p(p-v) , (71)

where p is the unit vector connecting the centers of the two colliding particles
at contact. The scattering angle 8 is related to the angle between p and v,

Fig. 7.4 Scattering kinematics for particles with initial _‘m_m~_<m.<m_oom€
v, final velocity v/, impact parameter b, ry is the hard-sphere diameter
and p is the unit vector connecting the centers of the particles at
contact.

7.2 Boltzmann Equation

Fig. 7.5 Kinematics for two-particle collisions in terms of a collision
cylinder.

cos ¥ = p-vby 2y + 6 = n. We also have sin § = b/ry where b is the impact
parameter.

Let us determine ], the number of molecules that leave the volume d3xd3v
in time 8t via collisions. Consider collisions between molecules with velocity v
in volume d®x centered at position x and molecules that move with a different
velocity vy such that the impact parameter of the (v, v;) collision falls in the
range of impact parameter b to b + db, as shown in Fig. 7.5. The azimuthal
angle of the collision is assumed to be confined to the range ¢ to ¢ + d¢ about
a plane fixed in space and containing the relative velocity v; — v. A collision
takes place if the centers of the two molecules are located inside the collision
cylinder shown in Fig. 7.5. Notice that the problem here is very similar to the
determination of the collision cylinder in determining the mean collision rate.
The difference is the base we use for the collision cylinder. In Fig. 7.5 the base
is the full collisional cross sectional area a..«w. In the current case, for reasons
that become clear when we treat |, the base is db b d¢ as shown in Fig. 7.5.

The number of molecules moving with velocity v in the region d°x is
f(x,v,t)d*xd3v and the total volume of collision cylinders for the (v, vy) colli-

sion is:
f(x, v, t)dxd*vbdbd¢ vy — v|8t . (72)
The number of molecules with velocity vy in the collision cylinder is:
f(x,vq,t)d%0, (73)

so the number of collisions under consideration is:

N(v,v1) = f(x,vi,)d%01 f(x, v, t)d>xd>vbdbde |vy — v|ot . (74)
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The molecular flux J_ comes from integrating over all velocities vy, impact
parameters b and azimuthal angles ¢:

T 21
- dPxdost = ﬁ \ P, \D " db [ bd jvi — vIf(x, v, Df(x v1.0)
xd3xd>vdt (75)

where ry denotes the range of forces. In this case, in contrast with our treat-
ment of [, below, we can do the integral over b and ¢ to find that |- =
N(x,v,t) where N(x, v, t) is given in the treatment of the mean collision rate
by Eq. (39).

Next we need to evaluate |, the number of particles scattered into the
phase-space volume d®vd®x in time 8t. This is the process where two par-
ticles with velocities v/ and v/ are scattered into v and v;. We easily have
that the number of particles going from (v/,v{) into (v,v;) in the volume
d*0'd%v d3x8t, is, in complete analogy with Eq. (74),

N V) = f(x, v}, )d0 f(x, v, t)d>xd®0'bdbdo |V} — V|8t . (76)
1 1 1
We show in Problem 7.6 that:
v’ d0) = dPod®v, , (77)

and we know that:
vi-v=l-vl, 78)

since the magnitude of the relative velocity is preserved in an elastic collision.
We have then:

N V) = Fx, vy, 1) f(x, v, 1)bdbdé [vy — v|dPod®o,dx8t . (79)

Then after integrating over vy, b and ¢ we arrive at the expression for [

3. 13 3 [T m / /
Jodxdost — \n S\ E@\ do [vi — vIf OV, B f(x, V), )
p 0 0
xd3xd3vdt . (80)

Since v/ and v} depend on v, v; and b we can not carry out the integral over
b. Putting together the results for [ and ] in Eq. (61) we have the famous
expression for the Boltzmann collision integral:

b?scu\%S\

0

b \o “ - (PR~ FR) (1)
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where we have used the convenient notation f = f(x,v,t), fi = f(x, vy, t),
f''= f(x,v,t) and f{ = f(x,v],t). Putting Eq. (81) back into Eq. (60) the
Boltzmann equation [11] is then given by:

) .
mlm+<.<\ub , (82)

where, here, we assume there is zero external force acting.

It is conventional to write the collisional contribution to the Boltzmann
equation in term of the differential cross section 6. We show in Problem 7.7
that we can replace the integral over the impact parameter with a properly
weighted average over the scattering angles:

\Ege:.u\quﬁ_fi_bv.: ) (83)
where:
dQ = sin 0.dedo (84)

is the usual differential for the solid angle in spherical coordinates. Then we
have for the Boltzmann collision integral:

fitv,t) = [dor [d0o(vi —v.O) jvi V[ (Ff- ) . @)

7.25
Collisional Invariants

It is important to consider momentum integrals of the collision integral defi-
ned by:

My (x, 1) = \ P x(v) fi(x, v, 1)
= [ doxv) [0 [dao(vi—vI.0) v vl (Ff - ££) . 86)
If we exchange v and v; in the integral we have:
My(x ) = \, oy %(v1) \ Po
x [dQo(lv-vilO)lv-wil (f ~£if) . @)

We see that the integrand is the same as before the exchange except x(v) —
X(v1). Next we make the change of variables v — v/ and v; — v} in Eq. (86):

My (x,t) = \ By (V) \. &0,



