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ABSTRACT

It is argued that a major fundamental limitation on the predictability of the El Nifio—Southern Oscillation
phenomenon is provided by the stochastic forcing of the tropical coupled ocean—atmosphere system by atmo-
spheric transients. A new theoretical framework is used to analyze in detail the sensitivity of a skillful coupled
forecast model to this stochastic forcing. The central concept in this analysis is the so-called stochastic optimal,
which represents the spatial pattern of noise most efficient at causing variance growth within adynamical system.
A number of interesting conclusions are reached. (a) Sensitivity to forcing is greatest during the northern spring
season and prior to warm events. (b) There is little sensitivity to meridional windstress noise. (c) A western
Pacific dipole pattern in heat flux noise is most efficient in forcing eastern Pacific SST variance. An estimate
of the actual wind stress stochastic forcing is obtained from recent ECMWF analyses and it is found that
‘““unavoidable’” error growth within the model due to this stochastic forcing saturates at approximately 0.5°C in
the NINO3 region with very rapid error growth during the first 6 months. The noise projects predominantly
onto the first stochastic optimal and, in addition, around 95% of the error growth can be attributed to stochastic
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forcing with a strong synoptic character.

1. Introduction

The study of the nature of atmospheric flow predict-
ability is now quite a developed field. The work of
Lorenz about 30 years ago established that weather fore-
casts beyond a certain duration are extremely sensitive
to the specification of initial conditions and that this
sensitivity provides afundamental limitation to the pre-
dictability of the flow. A large amount of effort has been
devoted in the literature to understanding thisrapid error
growth. One particular school (e.g., Frederiksen 1982)
has focused on the study of the so-called normal modes
of the dynamical system, which consist of the eigen-
vectors of the linearized matrix A that satisfy the equa-
tion

wu = Au,
ot

where u is the linearization vector of the dynamical
system under consideration. The most unstable of such
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modes tends to dominate error growth given sufficient
time. On the other hand, others, such as Farrell (1990)
and Molteni and Palmer (1993), have emphasized the
‘““singular vectors” or ‘“‘optimals” of the system. These
are the eigenvectors of the self-adjoint operator
B*(T)B(T), where B(T), the propagator operator, trans-
|ates the dynamical state vector u forward T time units.
The singular vectors with the greatest eigenvalues give
the spatial patterns of initial condition errors that grow
by the greatest amount over the specified time period.
Interestingly, there exist realistic systems that possess
no unstable nhormal modes but still possess growing sin-
gular vectors for values of T of interest to forecasting.

Another perspective has been provided by Egger and
Schilling (1984), who have been interested in studying
the predictability of the low-frequency planetary-scale
part of the flow. In their framework, they consider the
high-frequency synoptic-scale atmospheric motion as
providing a stochastic forcing to the planetary-scale
modes and hence acting as a fundamental limit to their
predictability.

In this paper we shall argue that this stochastic per-

1 The operators A and B are related in the limit so that T becomes
very small by the relation B(At) = 1 + AtA.
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spective on error growth is an appropriate one for the
El Nifio—Southern Oscillation (ENSO) phenomenon. In
the paradigm to be advocated, the role of stochastic
forcing is provided by atmospheric transients. Thisforc-
ing projectsonto the very low frequency coupled ocean—
atmosphere modes, which consequently limits multi-
seasonal predictability.

The study of predictability in the ENSO context is
still very much in its infancy. This state of affairs is
hardly surprising given that dynamical models capable
of forecasting the phenomenon have only existed now
for a decade. The first model shown to have this ca-
pability was the intermediate model of Zebiak and Cane
(1987). Interestingly, such models (see also Kleeman et
al. 1995) are still able to out-perform quite sophisticated
genera circulation models despite having some quite
large simplifications in their model physics. Such a sit-
uation probably indicates that a relatively simple phys-
ical mechanism is responsible for a good deal of ENSO
variability (see Kleeman 1993).

Given the success of intermediate models and also
their relative inexpense, most studies of ENSO error
growth/predictability have been based around them. The
works of Goswami and Shukla (1991) and Blumenthal
(1991), for example, were concerned with initial con-
dition error growth within such models.

While these models may have the dominant process
responsible for reasonably simulating ENSO, it is not
clear they contain the mechanisms responsible for lim-
iting its predictability. A particular concern in this re-
gard has been the absence of model atmospheric tran-
sients. Intermediate models[and also many hybrid mod-
els such as Balmaseda et al. (1994)] have steady-state
atmospheric models, which essentialy give a unique
solution for atmospheric flow when forced with a given
SST pattern. Thisisin contrast to atmospheric general
circulation models and the real atmosphere, where a
large ensemble of different flows are possible. In gen-
eral, the mean of this ensemble is close to the flow
predicted by the steady-state simple atmospheric mod-
els, which allows such models to work reasonably well
(e.g., Kleeman 1991; Kleeman et al. 1992). Note also
that the particular member of the ensemble that will
occur in several months' time is essentially unpredict-
able given the known limits to predictability of atmo-
spheric flows discussed previously. Thus inclusion of a
realistic simulation of the ensemble will not necessarily
assist in multiseasonal prediction.?2 On the other hand,
it seems reasonable to expect that omitting internal at-
mospheric variability within a coupled model will lead
to apossibly serious underestimate of error growth with-
in the real coupled system.

Asafirst step towards examining thisissue, Kleeman

2Unless, of course, the inclusion of the ensemble improves the
mean response.
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FiG. 1. (a) The ensemble rms error growth of the standard coupled
model after perturbation of initial conditions (see text). (b) Identical
to (a) but with increased coupling strength (see text). Errors refer to
NINO3 values and are in °C.

and Power (1994) obtained an estimate of the windstress
noise and added it to the windstress derived from the
Kleeman (1993) intermediate coupled model. They
showed that the resultant error growth within the model
occurred at fairly rapid rate (on the order of months)
and tended to saturate at a significant level after the
initial growth. Such a response is typical of a stochas-
tically driven system. The degree of error growth ob-
tained from this stochastic mechanism can be shown to
be far greater than that obtained when the initial con-
ditions of the model alone are subject to small random
errors. Displayed in Fig. 1 is the error growth resulting
from perturbing the initial conditions of a large ensem-
ble of coupled model forecasts by random zonal and
meridional wind “‘errors’ of standard deviation 0.2 m
s % The initial conditions were prepared by spinning
up the ocean model with historical wind data and had
dates 3 months apart for the entire period of 1972-86.
The figure shows how errors in the NINO3 (150°W to
90°W and 5°N to 5°S) SST anomaly index region evolve
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when the coupling strength of the model isat itsstandard
value and when the coupling strength is increased by
around 50%. Two values were chosen because they are
on either side of the self-sustaining oscillation bifur-
cation of the model. The resultsindicate only very mod-
est error growth whether the model has self-sustaining
oscillations or not. These figures are to be compared
with those from Fig. 8 of Kleeman and Power (1994),
which show the same ensemble experiments but with
an estimate of wind stress noise causing ensemble di-
vergence. There is much greater error growth in the
latter case with errors approaching 0.5°C after around
4 months. It is interesting to note that in a nearly iden-
tical initial condition experiment to that described
above, Goswami and Shukla (1991) found greater error
growth in the Zebiak and Cane (1987) coupled model
with errors increasing more or less linearly to around
0.5°C at 24 months. Note that such growth is still con-
siderably less rapid than that reported by Kleeman and
Power (1994). The most likely explanation for this dif-
ference in behavior of the two models lies in the ap-
parently chaotic-like behavior of the Zebiak and Cane
model (see Zebiak and Cane 1991) that is in contrast
to the Kleeman model, which exhibits only regular os-
cillations. In this respect, the Kleeman model is more
similar to the Battisti (1988) intermediate model. The
issue of chaotic behavior by coupled models has been
addressed in some detail by Jin et a. (1994) and E-F
Jin et al. (1996, personal communication), who used an
intermediate coupled model similar to the Kleeman
model. In the latter paper, they conducted a rather large
survey of parameter space in order to locate chaotic
regimes. While they found a number of such regimes,
they concluded that these tended to occupy a rather
small part of parameter space. This was in contrast to
regular oscillatory behavior, which tended to dominate
most of the space surveyed. Such a result suggests that
the real coupled system may be more likely to exhibit
the very small initial condition error growth depicted
here, although such a conclusion is, of course, prelim-
inary given the simplicity of the models studied.

In related work, Penland and Sardeshmukh (1995)
have argued on the basis of historical SST data that the
ENSO phenomenon itself can be described as a stable
dynamical system driven by spatially coherent Gaussian
noise. They argue that the stochastic forcing sets up an
optimal initial structure that then grows via the con-
structive interference of damped normal modes within
the system.

In this paper we shall take the previous study of Klee-
man and Power (1994) one step further by outlining a
theoretical framework that shall allow us to obtain in-
sight into the dynamical mechanisms by which sto-
chastic atmospheric fluxes of both momentum and heat
cause error growth within the coupled system. The
framework outlined is a small extension of that recently
proposed in the atmospheric context by Farrell and loan-
nou (1993a). It shall also allow usto relate the stochastic
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theory to the insights recently obtained by Moore and
Kleeman (1996) in their study of the singular vectors
of the Bureau of Meteorology Research Centre (BMRC)
intermediate coupled model.

The rest of the paper is organized as follows. Section
2 provides a derivation and overview of the theoretical
framework to be used. Section 3 describes the so-called
stochastic optimals of the coupled model and their sen-
sitivity to the seasonal cycle and ENSO phase. Section
4 discusses the nature of the wind stress noise and its
projection onto the optimals, while section 5 contains
a summary and discussion of the results obtained.

2. Theoretical framework

We provide here a relatively brief and hopefully in-
tuitive outline of the theoretical results required from
stochastic dynamical theory. Other results with a some-
what different emphasis may be found in the recent
publications by Farrell and loannou (1993a-c).

We shall confine our treatment to time-discretized
versions of partial differential equationsin order to keep
the derivation transparent. The derivations are easily
extended to the continuous case (see Kleeman et al.
1988).

We assume that the dynamical system of interest can
be modeled by the following linear stochastic differ-
ential equation:

u®) = Au() + (), D

where f(t) is a Gaussian noise with zero mean for all
times; we are using boldface to indicate matrices/vectors
with respect to spatial and vector indices. Matrices are
denoted by upper case symbols while vectors are lower
case.

Consider now a backward time discretization of Eq.
(1) and label the time indices with Greek letters:

U, = u, + At(Au, + ). 2
This may be rewritten as
Uy = B(u + 1, w)u, + Atf, 3

where B(v, u) is referred to as the propagator matrix
from time u to », as applying it to u, in the unforced
case produces u,. Mathematically, we have B(v, u) =
(1+ AtA, ) + AtA, ) --- (1 + AtA).

It is relatively straightforward now to write u, as a
function of f. This can be obtained by iterating (3) from
a set of initial conditions:

n—1

u, = B(w, O)u, + At Z B(u, A + Df, (4

where the superscripts are matrix powers. For our pres-
ent purpose we shall assume that the initial conditions
are deterministic, although it should be noted that the
subsequent expressions can be generalized to a case
where they have prescribed statistics.
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If we assume that the noise is specified by the sta-
tistics

<fjA> =0
f.f)y = Cyr ®)

(the angle brackets denote an ensemble average, and we
are using Latin indices for the spatial/vector variation),
it is easy to derive from (4) an equation for the second
order moments

p—1 v—1

(uuhy = (A2 3, > B(u, A + )CBi(y, m + 1)

+ B(u, 0)ug(B(v, O)uy)". (6)

Note that the first moment (the mean) is trivia to
evaluate:

(u,) = B(w, O)u,, ()

and this implies that the covariance (u,, ul) = (u,uf)
— (u,Xul) issimply given by thefirst term on the right-
hand side of Eqg. (6). This result generalizes the results
of Gardiner (1985) and Farrell and loannou (1993a) to
the case of nonwhite stochastic forcing. For the purposes
of this section we shall assume that the forcing noise
is separable in space and time;

Cim = CD'. (8)

Using Eq. (6) we can write the covariance at time
step u as

=1 p—1

(u,, uf) = (A2 > D) DMB(u, A + 1)

A=0 7=0
. CB'(u, 7 + 1). 9)

It can now be shown easily that the variance at time
step u for a particular norm of interest may be written
as

Va(ull?) = (At)ZTr{I:ZO 2 DB (u, A + 1)

- XB(u, ™ + 1)c}, (10)

where the matrix X is the kernel of the norm under
consideration. If one was interested in the variance of
the L, norm of the dynamical variables, then X is the
Kronecker delta. On the other hand, if oneis interested
in the spatial average of a particular dynamical variable
such as the SST in the NINOS3 region (as we shall be
below), then

X; = RR
R = 1/n ifiliesintheregionof ngrid points
=0 otherwise (11
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Equation (10) may be abbreviated in an obvious man-
ner to

Var = Tr{ZC}
with
n—1 u—1
Z = (AD)2 > D DVB'(u, A + 1)XB(u, 7 + 1).
A=0 7=0

(12)

We have chosen to split the matrix product of 10 into
Z and C because we wish to clearly separate the influ-
ence of the dynamics (expressed through Z) and the
stochastic forcing (expressed through C, the spatial co-
variance matrix) in inducing variance growth in the sys-
tem.

If Z and C have eigenvalue, normalized eigenvector
sets {q, r'} and {p, s}, respectively, then

tr{ZC} = qp(r', 9)?, (13)

where the round brackets denote the usual vector inner
product, and we are summing over repeated Latin in-
dices. This result follows from the result of Hadley
(1961, p. 248) that the symmetric matrices Z and C may
be written as Z; = gk and C; = p'sst. Finally, it is
relatively straightforward to establish that the eigen-
values g« and p* are al positive (see appendix).

Equations (12) and (13) have a quite simple physical
interpretation: the eigenvectors of the noise s, which
are termed the EOFs, cause a growth in the variance of
avariable of interest (e.g., SST in NINO3) by projecting
onto the stochastic optimals ri. This projection is
weighted by the variance p of the EOF s and by ¢,
which measure the degree of instability or excitability
of the stochastic optimal r'. The terminology stochastic
optimal is used for the r' since noise with the spatial/
vector coherence of this eigenvector will be efficient at
forcing variance growth within the dynamical system.
In particular, noise with the spatial coherency of the
stochastic optimal with largest eigenvalue g will be
most efficient at forcing variance growth within the sys-
tem. We use adifferent terminology in this context from
that of Farrell and loannou (1993a), who refer to sto-
chastic optimals as back EOFs or forcing orthogonal
functions (FOFs). The reason for our choice of termi-
nology is the close relationship of stochastic optimals
to conventional optimals (see below). Also note that the
stochastic optimal s introduced here generalize the FOFs
of Farrell and loannou to the case of any noise that is
separable in space and time from the special case of
white noise (which, by definition, has zero temporal
correlation at any nonzero lag).

The relationship between the two kinds of optimal
(stochastic and conventional) is quite apparent when
white noise is considered. For such noise we write

1
D/\‘n' — _8)\77
At
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which becomes a delta function as At - 0, as required
for white noise. The stochastic optimal matrix Z then
reduces to

n—1
Z = At > Bf(u, A + DXB(u, A + 1), (14)
A=0

which is simply the discretized time integral of the con-
ventional optimal matrices. One might expect therefore
that the white noise stochastic optimals at time T are
roughly the time average of the conventional optimals
for all times between 0 and T. Such an interpretation
makes intuitive sense since the system here is being
perturbed independently at every time step rather than
simply at the first step (or initial conditions), as is the
case for conventional error growth studies.

3. Stochastic optimals

In this section we calculate the eigenvectors and ei-
genvalues of the stochastic optimal matrix Z defined in
Egs. (10) and (12) of the previous section. We shall do
this for linearizations of the BMRC intermediate cou-
pled model that is described in detail in Kleeman (1991)
and Kleeman (1993) and in summary form in Kleeman
and Power (1994).

The model consists of anomaly ocean and atmosphere
models that exchange wind and SST and whose dynam-
ics are given by shallow-water equations. The atmo-
spheric model includes a simple convection parameter-
ization that has the effect of causing arealistically non-
linear wind response to SST anomalies. Anomalies in
regions of high mean SST, such asthe western equatorial
Pacific, induce a much larger model response than those
in areas of low mean SST, such as the southeastern
Pacific.

The ocean model is a tropical Pacific basin model
whose dynamics are expressed in terms of equatorial
meridional (Kelvin/Rossby) modes and is truncated at
the sixth Rossby mode. The prognostic SST equation
is influenced only by equatorial thermocline perturba-
tions (which are more important in the east than the
west) and a Newtonian cooling term. The meridional
structure of SST anomalies is taken to be fixed (sym-
metric Gaussian with a 10° e-folding radius), and thus
anomalies are determined by their equatorial value. A
capping nonlinearity is applied to thermocline pertur-
bations in the SST equation to prevent runaway linear
coupled instability.

This model with only thermocline perturbations af -
fecting SST was shown in Kleeman (1993) to have op-
timal skill in forecasting ENSO, and the level of skill
obtainable is comparable with the better current inter-
national efforts® (see Kleeman et al. 1995). It is used

3 The initialization technique used by Chen et a. (1995) with the
Zebiak and Cane coupled model resultsin skill that probably exceeds
that obtained to date with the model used here.
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routinely within BMRC to produce real time forecasts
of the NINO3 index (see Kleeman 1994).

Calculating the full eigenvector/eigenvalue set for the
matrix Z is at first sight a rather daunting task. Osten-
sibly one needs to integrate the adjoint model out to
each time in the time sum that makes up Z and then
apply the tangent linear model to return to the initial
time of the optimal. To define Z as a matrix, this needs
to be done to every basis vector of state space. The state
vector for the coupled model has dimension 1800, and
the time step of the model is around 1.5 days, which
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Fic. 3. (Continued) (a) Spatial pattern for windstress of the dominant optimal at 6-month

integration. Units are dimensionless. (b) Identical to (a) but for heat flux. (c) Identical to

(a) but for the second optimal. (d) Identical to (b) but for the second optimal. (€) Identical
to (b) but for a simplified atmospheric model (see text).

implies that if a 6-month stochastic optimal is desired
then order 10° integrations of an average duration of 3
months are at first sight required to evaluate Z. Such
an undertaking is close to impractical even with the
current highly simplified and optimized model. Fortu-
nately, if we restrict our attention to examining the vari-
ance of spatially averaged quantities such as NINO3
then the outlook is considerably brighter. If we denote
by t, the vector Bf(w, A + 1)R [cf. Egs. (10) and (11)],
then it is easy to show that

p—1 p—1

Z = (AY)2 >, > DAn(t,)(t)"

A=0 7=0

(15)

We require therefore only N backward integrations of
the adjoint coupled model where N = T/At isthe number
of time steps for the time interval T of interest. In the
case of the 6-month optimal discussed above, this
amounts to only 120 integrations of an average duration
of 3 months, that is, a 30-yr integration of the model.
Given this situation, it was considered practical to cal-
culate the stochastic optimal matrices out to 3 yr.

As the standard experiment, optimals were cal cul ated
using only the seasonal cycle as the background state
(this only influences the atmospheric model) and com-
mencing in August. Sensitivity of the resultsto different
background states and start months are examined bel ow.
In addition, the stochastic forcing was assumed to be
white in time. In actual fact (see next section), the de-
correlation timescale of the observed forcing can be on
the order of afew days, but thishasvery littlequalitative
effect on the dominant optimals because the coupled
timescale is much longer. Hence for simplicity we con-
fine ourselves here to white noise. The stochastic forcing
was inserted as a source term in both the momentum
and SST equations of the ocean. We are therefore con-
sidering a situation where both wind stress and heat flux
““noise’”’ are assumed to force the coupled model. Usu-
ally only momentum forcing is considered in the ENSO
context, but recent field programs in the western Pacific

have emphasized the importance of the latter quantity
in the context of high-frequency atmospheric variability
(e.g., Lukas 1987). As we shall see later, obtaining re-
liable estimates of the heat flux is presently difficult, so
weincludeit only to examinein aqualitative sense what
heat flux spatial signals are efficient at forcing large-
scale SST signals in the coupled system. We defer con-
sideration of the relative importance of wind stress and
heat flux forcing to a later study when more reliable
estimates of the latter quantity become available.

Depicted in Fig. 2ais the square root of eigenvalues
of the first 100 optimals for 12-month integration (be-
havior is insensitive to integration time). Physically,
each eigenvalue is proportional to the variance growth
contributed by its optimal if the stochastic forcing were
to project equally onto each optimal. Of courseit needs
to be emphasized that the magnitude of this projection
depends on the degree to which the spatial coherency
of the stochastic forcing matches the spatial pattern of
the optimal. Notable isthe sharp decline of ‘“instability”
or ““excitability’” with optimal number. Such aresult is
apparent at all integration times, as can be seen in Fig.
2b, which shows the variation of the first five eigen-
values with time. The first optimal is dominant partic-
ularly for small times and, if the noise were to project
equally onto the optimals depicted, then this optimal
would account for roughly four—nine times the variance
growth of the next most excitable optimal.

The spatia structures of the first two optimals for
6-month integration are displayed in Fig. 3. Depicted
are both the wind stress and heat flux optimal patterns.
The wind stress pattern is characterized by fairly broad-
scale symmetric and zonally dominated structures. This
zonality is an important point since it implies that the
meridional component of the wind stress noise is un-
important in causing error growth. Such a result may,
of course, be model dependent given the simplicity of
the current model so some caution needsto be exercised.

The dominant optimal’s wind stress pattern differs
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markedly in the western and eastern Pacific. In the for-
mer area, the meridional structure is reasonably broad
scale, implying a better match with observed atmo-
spheric patterns than in the east where the pattern is
fairly complex. On the other hand, the signal generally
appears of larger amplitude in this latter region and
becomes more so as the integration time increases (the
general qualitative response depicted in Fig. 2 is not
affected much by integration time). We return to this
issuein the next section when we examine observational
estimates of the noise.

The heat flux shows a rather interesting pattern for
the dominant optimal that is essentially independent of
integration time. It consists basically of a dipole pattern
confined to the western part of the basin. This result is
rather surprising since the variance of NINO3 is being
examined and this is an eastern Pacific SST index. In-
tuitively one may have expected that heat flux noise
directly overlying NINO3 may have been more effective
in inducing error growth. That thisis not the case points
to the fundamental importance of coupled dynamicsin
determining the response of the model to noise forcing.
It is rather interesting to also note that there is some
resemblance between the pattern displayed and the ob-
servations of the latent heat flux forcing of the Madden—
Julian oscillation recently reported by Jones and Weare
(1996; C. Jones and B. Weare 1997, manuscript sub-
mitted to J. Climate).

Given this western Pacific confinement, one might ex-
pect that the nature of the atmospheric model used may
play some role in determining the structures observed.
As was noted above, this model is spatially nonuniform
(and redlistically so) in its response to SST anomalies.
There is a significantly larger atmospheric response in
the high-mean SST western Pacific than in the low-mean
SST eastern Pecific. In order to explore this, the atmo-
spheric model heating was simplified to make it simply
proportional to SST anomaly. Such an atmospheric model
is purely linear in its response to SST anomalies. The
resulting dominant heat flux optimal is depicted in Fig.
3e, whereit is evident that the dipole pattern remains but
has now spread and changed so that the eastern node of
the pattern is now more dominant and overliesthe NINO3
region. Thus the non-linearity of the atmosphere is an
important but not total explanation for the structure ob-
served, since the dipole pattern remains even when this
characteristic is removed.

The seasonal dependence of the results are now ex-
amined by commencing the integration in February.
Based on the experience of studying conventional op-
timals (Moore and Kleeman 1996), we might expect
variance growth to be greater through the first 6 months
or so of this casethan the standard case. Such an analysis
is confirmed by a viewing of the first eigenvalues for
the dominant optimals of the two cases (Fig. 4). We see
that the eigenvalues diverge between 2 and 8 months
and subsequently converge over the next 6 months, con-
sistent with the period April—September being most fa-
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vorable for error growth in the model. The spatial struc-
tures of the optimal (not shown) are essentially un-
changed from the standard run.

The model with standard parameters as described in
Kleeman and Power (1994) is stable in the sense that
oscillations within the model invariably decay with a
timescale of a couple of years. If the coupling strength
of the model is increased by around 15%, then self-
sustaining oscillations with a period of about 3 yr ap-
pear. The influence of this primary bifurcation on sto-
chastic optimals was examined by increasing the cou-
pling strength mean wind speed parameter from 6.5 m
s 1 to 9.0 m s . When this was done (Fig. 5) the ei-
genvalue of the dominant optimal increased substan-
tially as expected intuitively, and now significant growth
also occurred at longer timescales. This was unlike the
standard case where there was a saturation in growth at
around 6-12 months. Interestingly, this growth occurred
primarily during the April—September period of the sec-
ond year, again demonstrating the significance of the
seasonal cycle to variance growth. As in the seasonal
cycle experiment above, the spatial structures of the
dominant optimal were qualitatively unaffected by an
increase in coupling strength.

Finally, we examine the influence of ENSO phase on
the optimals. We do this in the same way as was pre-
viously done for the standard optimals in Moore and
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Kleeman (1996): self-sustaining oscillations from the
coupled model (see above) were used to define a back-
ground state for the calculation of optimals. Two starting
points were used, one 6 months before a large eastern
Pacific warming and the other 18 months later, which
was 6 months before an anal ogous cooling. These starting
points and the oscillation used to define the background
state are depicted in Fig. 6a. Figure 6b depicts the ei-
genvalues of the first two optimals for both start dates,
and it is clear that the dominant eigenvalue is far greater
in the warm event precursor situation, as was noted in
the standard optimal case. The spatial pattern of the op-
timal s exhibits some change with phase al so (not shown).
The warm precursor situation resembles the standard ex-
periment qualitatively but has a more prominent signa
in the central Pacific. The cold precursor again resembles
qualitatively the standard experiment but shows a sig-
nificantly stronger eastern Pacific signal, probably be-
cause conditions there are very warm for much of the
integration (cf. Fig. 6a). Both these results point to the
importance of the SST background state. The system in
both cases appears more sensitive in regions where the
background SST is higher than climatology.

What are the implications of the above results for
ENSO predictability? As we have seen, the eigenvalue
of the first stochastic optimal tends to be larger than
those of succeeding optimals. This suggests that this
optimal will dominate error growth character within the
coupled system. This conclusion assumes that the spatial
coherency of the real world noise has sufficient similarity
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with the spatial structure of the first optimal to allow a
significant projection [cf. the inner product on the right-
hand side of Eq. (13)] and hence error growth. We shall
see in the next section when we derive an estimate of
the real world noise that this assumption is justified.

The character of the square root of the first optimal
thus tells us what kind of error growth we may expect
in the coupled system due to stochastic input. Viewing
Fig. 5 we see that error growth tends to be very rapid
for the first few months, after which it is substantially
reduced. If the coupled system is above the primary bi-
furcation (i.e., capable of self-sustaining oscillations),
then further reduced growth occurs on longer timescales
(years), whereas if it is below the bifurcation there tends
to be very little growth beyond 10 months. The degree
to which predictability islost depends on the ratio of the
error at a given time to the standard deviation of the
observed ENSO signal. Thus if the two are comparable,
one would say that all predictability has been lost, where-
as if the error is significantly smaller, then clearly some
degree of predictability still remains. The magnitude of
this ratio depends not only on the eigenvalue of the op-
timal but also on the size of the noise (viathe eigenvalues
p of its EOFs) and the degree to which it is able to force
the optimal [via the projection in Eq. (13)]. These latter
two factors are addressed in the next section.

4. Stochastic forcing

In this section we obtain an estimate of the actual
stochastic component that forcesthe coupled system and
examine how it projects onto the stochastic optimals
discussed in the previous section. For our present pur-
poses, we shall restrict our attention to the wind stress
component of such forcing (see, however, the discussion
section below). We do this because such a component
is likely to be more reliably determined from analyses
since it depends primarily on one field quantity, namely
the surface vector wind. Heat flux, on the other hand,
depends on a large number of field variables (air tem-
perature, relative humidity, cloud cover, and wind
speed) and so is likely to be less accurately defined in
existing analyses. In order to avoid potential aliasing
problems arising from monthly averaging, and also to
obtain a better estimate of the spatial patterns of at-
mospheric transients, we opted to use the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
daily analyses (0000 UTC) for the period 1987-92 to
extract the wind stress noise. Although this dataset has
its problems (e.g., C. Jones and B. Weare 1997, manu-
script submitted to J. Climate), it represents one of the
best comprehensive daily datasets currently available.
It is expected that better datasets will become available
following the recent valuable reanalysis projects being
conducted at ECMWF and National Centers for Envi-
ronmental Prediction (formerly the National Meteoro-
logical Center) (see WGNE 1995) and that the present
analysis could then be repeated. Following C. Jones and
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B. Weare (1997, manuscript submitted to J. Climate)
we choseto correct the wind speed derived by a constant
relative factor. These authors found that for the period
1985-89 a multiplicative factor of 1.4 was appropriate
when comparison was made with Comprehensive
Ocean—-Atmosphere Data Set. We repeated their com-
parison on ayear by year basisfor the 6 yr of the dataset
and found that this factor was appropriate for the first
2 yr, but that the bias was significantly reduced for the
final 3 yr where a factor of 1.15 was found more ap-
propriate. Such a result is consistent with the analysis
of this dataset by Trenberth (1992), who found that the
tropical circulation strengthened significantly following
major revisions to the ECMWF model in May 1989.
We therefore applied the first multiplicative correction
factor up to this date and the second factor for the re-
mainder of the dataset.

The extraction of the stochastic component from time
seriesisfraught with difficulties. Many different approach-
es have been devised in the literature and a fairly com-
prehensive discussion may be found in, for example,
Priestley (1981). Here we shall use two different methods
and show that they give similar answers. Thisinsengitivity
of outcome adds confidence to our estimate of the noise.

The first technique used, a high-pass time filter, is
probably the most obvious conceptually. Kleeman and
Power (1994) found that a cutoff of periods greater than
12 months was appropriate, since it was at this point
that the atmospheric model used there (and here) began
to correlate significantly with observed wind when
forced with observed SST. In general, the atmospheric
model response compares very well with the observa-
tions for low frequencies (see Kleeman 1991; Kleeman
et a. 1992). The lack of correlation at high frequencies
is mainly due to the internal variability of the real at-
mosphere, which is what we are attempting to define
here. Of course, with a more sophisticated atmospheric
model (e.g., a general circulation model) there may be
frequencies less than 12 months that are still aresponse
to SST forcing. As we shall see below, however, the
residual after high-pass filtering shows little autocor-
relation beyond synoptic timescal es, suggesting that this
caveat on our method is probably not serious. Thus our
first estimate of wind stress noise was obtained as fol-
lows. The 10-m winds were converted to a wind stress
using a quadratic stress law and an exchange coefficient
¢, = 1.5 X 10-3. The vector wind stress was then in-
terpolated onto the domain used in the previous section
for the stochastic optimals. The annual cycle was re-
moved using monthly means over the 6 yr of the dataset.
A high-pass filter with periods greater than 12 months
removed was then applied.

The second method used involved the construction of
a linear statistical model of the wind stress anomalies
as afunction of the observed SST anomalies (see Reyn-
olds and Smith 1994). The noise was then derived as a
residual sinceitisthe part of the wind stressunexplained
by SST variations. This linear model of the coupled
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system is supported by the statistical analysisof Penland
and Sardeshmukh (1995). Symbolically the model can
be expressed as

w = Asst + n, (16)

where w is the wind stress vector defined at all spatia
points of interest. Here, sst isthe SST anomaly defined
in an EOF expansion space (we used the first 10 EOFs
of SST for latitudes 40°N to 40°S; results are insensitive
to the addition of further EOFs). Finally, n isthe desired
signal, while A is the regression matrix that is obtained
from the wind stress and SST datasets under the as-
sumption that SST variations are uncorrelated with the
noise n. A caveat on this method of noise derivation is
the fact that it takes no account of the nonlinear response
of the atmosphere to SST anomalies and so may con-
ceivably overestimate the noise as a consequence.

The similarity of the resulting noise datasets was as-
sessed by calculating the first 50 EOFs and comparing
both the spatial patterns and the explained variances. It
is evident from Eq. (13) that this is the appropriate com-
parison to make when one is interested in determining
the effect of the noise on the coupled system. Rather
surprisingly perhaps, there was little difference in both
the spatial patterns and the explained variances of the
two methods. Occasional quantitative differences could
be seen after EOF number 4 but no qualitative differences
were noted. In addition, eigenvalues (explained vari-
ances) were invariably within 5% of each other.

The spatial patterns of the first 5 EOFs of the high-
pass dataset can be seen in Fig. 7, where it is evident
that the patterns have a large-scale synoptic character.
Such a synoptic interpretation is confirmed by a cal-
culation of the autocorrelation function of the com-
ponent time series of the EOFs. This shows a typical
e-folding decorrelation timescale of around 3.5 daysfor
the first 15 or so EOFs, dropping to around 1 day for
the next 150. Higher-order EOFs show little spatial or-
ganization and an essentially instantaneous (white) de-
correlation timescale. This suggests that they may be
more related to analysis errors.

We now use Eq. (13) to examine the way in which
the observed noise projects onto the stochastic optimals.
The results to be discussed were insensitive to the par-
ticular noise dataset utilized. For our present purposes
we shall assume that the noise EOFs have an exponential
decorrelation character with time constants as discussed
in the previous paragraph. This assumption of non-
whiteness for the low-order EOFs is important to the
magnitude of the variance they excite in the coupled
model but does not affect the nature of the low-order
optimals to any great extent. The nonwhiteness altersthe
optimal operator by including cross terms with time dif-
ferences of the order of the decorrelation timescale of
the noise. Since this timescale is much smaller than that
of the coupled model (days rather than months), the cross
terms are approximately equal to the diagonal term, and
so the optimal operator is modified only by a multipli-

763

@

30N —

T
15N AT
e - P
7 -~ -
A )
Eq

=% v
= . *
o = v - 3
. N
158 N N -
\ S
~
308 1 1

127E 150E 180 150W 120W gow

30N — 1 I 30N
.. 4
&3
NET S « “ . R ; B 1o
- ~ . . “// // 4 N - > B
> X » » “ - > .
= < < = 5 ¥

Eq

. (. TS R W ¥

158

a .
©.108E+00
NAXIMUM VECTQR

t/

Eq

/40
A

I

~
~ * 158
= Y

~ 0.131E+400

308 1 1 1 MAXIMUM VECTR

127E 150E 180 150W 120W 90W

m
o

s
///f,

0y

"\,

L\\’

~\1\\1

N\
B mm\’\ﬁ\ ’

fr1t r{\\
J, /fa

ff// AN
1

0.871E-01
0 1 MAXIMUM VEFTOR
127E 150E 180 150W 120W 0w

@
>
@

g T T T 30N
2N 4
15N N T jv Ve v v v p 15N
sl AN A e
\ B - P . o # " N R R
R . R « , . v v N B N
Eq ey = 5y = r G < = = = ¥ Eq
A0 ')‘\. - e N A . - N ~
et N NNy N -~ - ~ N N
158 NNy PN N\ > I e N W R
i > 8 SN T e DN
\\ \ 0.102E+00
308 1 1 1 MAXIMUM VEGEOR | 50

127E 150E 180 150W 120W 20W

LR

g g
M
\
\\'\A_
A
N\
vr v
R N
R

17
\L Wz

\T/f¢;.‘_

-t 158

0.108E+400
1 1 MAXIMUM VEGTOR
127E 150E 180 150W 120w oW

FiG. 7. The first 5 EOFs of wind stress noise derived from
ECMWF analyses. The EOFs have been normalized.

/
/7
%
///
////Jl"\
PVEL




764

(8a)
0.55p

0.50F e

0.45} T

0.40F
0.35}

0.30F

ERROR (NINO3)

0.25F

0.20}F

0.15F

010: " 1 I L L L L L L 1 L il L L n L A L L 1 L 1 i
0 2 4 6 8 10 12 14 16 18 20 22 24
TIME (MONTHS)

Standard Model August Start

Standard Model February Start
—————— Increased Coupling Strength August Start

0.90 |
0.85 [
0.80 |
075 [
070 |
0.65

0.60 |

FRACTIONAL CONTRIBUTION

055 F

0.50

WP P A A Il L L

20 25 30 35
MODEL NUMBER

0.45 40 45 50

cative factor. The factor is approximately equal to twice
the time integral of the decorrelation function assumed.
These conclusions were confirmed by calculating the
nonwhite (with decorrelation timescale of 3.5 days) op-
timals and their eigenvalues at 6 and 12 months for the
standard model discussed in the previous section. A fur-
ther complication arises from the fact that several time-
scales are involved in the noise. This therefore violates
the assumption we made in section 2 that the noise is
separablein space and time. Fortunately, becausewe have
separated the time decorrelation along EOF lines, we
need only a very minor generalization of the formalism
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(February), and the increased coupling strength model. (b) The
cumulative contribution of optimals to unavoidable error at 6
months. (c) The cumulative contribution of wind stress noise
EOFs to unavoidable error at 6 months.

derived. In fact, since the associated time series of dif-
ferent EOFs are uncorrelated, it is easily shown that the
components of the noise with different timescales are
uncorrelated and thus expression 10 breaks into separate
pieces for each of these parts of the noise.

The square root of the variance growth (the ““‘un-
avoidable’ 4 error) was calculated for three cases: where

4 The error is unavoidable because it is induced by the forcing of
the climate system by atmospheric variability (primarily synoptic
transients), which is essentialy unpredictable beyond a few days.
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forecasts were initiated in August and February and
where the coupling strength was increased to induce
self-sustaining model oscillations (as per the previous
section). Results are displayed in Fig. 8aand show rapid
growth in the first 4—6 months and a saturation at values
ranging from 0.4°C to 0.55°C. They also confirm the
conclusions reached on error growth in the previous
section regarding seasonality and coupling strength.
Surprisingly perhaps, the results are comparable with
those obtained by Kleeman and Power (1994) with a
quite different noise dataset (they used the monthly The
Florida State University product). One difference from
the results of these authors is that at quite short time-
scales (less than 3 months), the error growth tends to
be somewhat reduced in the present case. Preliminary
results from a coupled general circulation model (T.
Stockdale 1996, personal communication) support this
reduced short timescale error growth rate. It is inter-
esting to contrast the error growth curve here with that
obtained when initial conditions are subject to small
errors. In this latter case, for standard coupling strength
after an initial growth, there is a reduction because the
system is essentially dissipative on asymptotically long
timescales (it is below the primary bifurcation). Phys-
ically, the error saturates in the stochastic case because
for long timescales the stochastic forcing balances the
dissipation (see Penland and Sardeshmukh 1995; Gard-
ner 1985).

It is instructive to decompose the error growth into
its optimal and noise EOF contributions. Displayed in
Figs. 8b and 8c are these decompositions for 6 months.
Focusing first on the optimal decomposition (Fig. 8b),
we note that error growth is overwhelmingly dominated
by the contribution of the first optimal, which was an-
alyzed in detail in the previous section. This dominance
becomes somewhat less pronounced at longer integra-
tion times (the first optimal contributes around 65% of
error growth at 12 months) but nevertheless it shows
that the conclusions reached in the previous section re-
garding the sensitivity of the dominant optimal eigen-
value are likely to carry over to error growth in general
(as is partially evident from Fig. 8a).

The noise EOF decomposition (Fig. 8c) is also inter-
esting because it shows that the first 10 or so EOFs are
responsible for around 90% of growth. Thislendsweight
to our estimate of unavoidable error since it implies that
most growth is induced by noise patterns that have a
clear synoptic character (the first 15 or so, see above)
rather than by patterns that are probably associated with
analysis error (there are around 2000 patterns in all for
the domain considered). These latter patterns appear to
account for only around 5% of error growth.

Finally, the spatial dependency of the noise forcing
was calculated. This was done to determine which spa-
tial features of the optimals are important for exciting
variance growth. The relative contribution of each grid
point to variance growth is depicted in Fig. 9 for the
standard model at 6 months and shows a clear central
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equatorial Pacific peak. This provides evidence that it
is this feature of the dominant optimal rather than the
meridionally complex but large eastern Pacific pattern
that is primarily responsible for error growth.

5. Summary and discussion

It has been argued that stochastic forcing of the trop-
ical coupled ocean—atmosphere system by atmospheric
transients is likely to be a major factor in the funda-
mental limitation of ENSO predictability. The nature of
this limitation has been explored using a skillful inter-
mediate ENSO forecast model and a newly devel oped
theoretical framework. The major new concept in this
theoretical framework is the so-called stochastic opti-
mal, which represents the spatial patterns onto which
stochastic forcing must project to maximize error
growth over a given time interval. The stochastic op-
timal contrastswith the conventional error optimal much
discussed in the literature, which shows the spatial pat-
terns in initial conditions errors most prone to growth.

It is demonstrated that the stochastic optimal spectrum
is dominated in general by the first optimal. The eigen-
value of this optimal, which measures its potentia for
inducing error growth, shows sensitivity to season, cou-
pling strength, and ENSO phase. The value increases
most strongly during the northern spring, increases mark-
edly asthe coupling strength increases, and tendsto grow
most rapidly just prior to warm events. These features
have aready been noted for the conventional optimals
of the coupled model as analyzed by Moore and Kleeman
(1996). Such a result was expected intuitively because
of the mathematical relationship between the two kinds
of optimals. For white noise, the stochastic optimal op-
erator is the time integral (over the period of interest) of
the conventional operator and thus represents the time
average conventional optimal operator. While such are-
lationship is very suggestive, it should be stressed that
it does not rigorously imply that the stochastic optimals
are the time average of the standard optimals.

The spatial features of the dominant optimal were
found to be reasonably insensitive to both the time pe-
riod considered and also the parametric variations dis-
cussed above. In general, the spatial pattern for wind
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stress showed large-scale characteristics both zonally
and meridionally in the western to central Pacific. In
the east, large amplitude features were noted, but they
had a meridional scale unlikely to match observed at-
mospheric variability. Meridional stresswas noted to be
very small in the optimal, implying that the coupled
model is quiteinsensitive to such stochastic forcing. The
heat flux pattern showed a very interesting western Pa-
cific zonal dipole that was unexpected. The error growth
norm used in this study was NINO3, an eastern Pacific
region, and one may have expected intuitively that heat
flux noise directly overlying this region would contrib-
ute most to SST error growth here. That this is not the
case points to the central importance of coupled dy-
namics in determining error growth.

Next, an estimate of the actua stochastic forcing of
the tropical Pacific was obtained using recent ECMWF
analyses. Attention was restricted to wind stressforcing
as this was considered most reliable (see, however, the
discussion on heat flux below). Two very different tech-
niques were used to extract the ** stochastic’’ component
of the analyses, and the almost identical results obtained
add to our confidence in the estimate. An EOF analysis
of the stochastic dataset was performed as this was the
appropriate mathematical decomposition for projection
onto the optimals. The first 15 or so EOFs displayed
strong synoptic character with large spatial scales and
an e-folding decorrelation timescal e of roughly 3.5 days.
These patterns overwhelmingly dominated the cal culated
error growth, providing us with physically based confi-
dence in our estimate of the fundamental limitation to
predictability due to windstress noise. Physicaly, this
fundamental limitation occurs because the wind stress
variahility associated with synoptic transients signifi-
cantly forces the coupled system but, on the other hand,
is essentially unpredictable beyond a week or so (as ev-
idenced by its decorrelation timescale of 3.5 days). Thus
our lack of knowledge of the synoptic state of the tropical
Pacific several months in advance implies that thereis a
significant lack of precision in our future knowledge of
slowly varying climatic quantities such as SST.

Thetotal error growth calculated tended to grow very
rapidly for the first 4 to 6 months and then saturate at
a value of around 0.5°C for the NINO3 region. This
behavior was reasonably similar to previous estimates
obtained directly and with a very different stochastic
dataset (see Kleeman and Power 1994). Confirming the
previous discussion on the dominance of the first op-
timal, it was found that its contribution to total error
growth was greater than 50% for the first 2 years. It is
also worth comparing these estimates with the standard
deviation of the observed NINO3, which for the period
1950-93 is around 0.82°C. Thus our estimate of error
growth indicates that while a substantial amount of pre-
dictability is lost during the first 24 months due to sto-
chastic atmospheric transients, some still remains.

The degree to which the kind of error growth cal-
culated and analyzed here compares with growth due
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purely to initial condition errors (and not due to unpre-
dictable atmospheric transients) remains alittle unclear.
As was noted in section 1, the degree of error growth
due to the latter mechanism seems to vary according to
the model used. Such variation is apparently connected
to whether the model exhibits chaotic behavior or not.
Despite this variation, it is still the case that the error
growth reported here is much more rapid than any of
the initial condition error growths reported in inter-
mediate coupled models. This suggests strongly that on
short timescales (6—12 months), the mechanism of error
growth proposed here and in Kleeman and Power (1994)
will dominate. On longer timescales, the issue is far
from settled and seems to depend on whether the real
coupled system is above or below the primary bifur-
cation (note the difference in behavior between 12 and
24 months in Fig. 8a according to location about the
bifurcation) or whether it is in a chaotic part of param-
eter space. These questions await amore comprehensive
study that is currently being planned.

Some preliminary discussion of the contribution of
heat flux stochastic forcing is warranted. Clearly an
analysis similar to that performed above for wind stress
is required; however, reliable observational estimates of
heat flux are only now just beginning to appear. Two
studies of particular interest in this regard are those of
Jones and Weare (1996; C. Jones and B. Weare 1997,
manuscript submitted to J. Climate) and Hendon and
Glick (1997). Both have concentrated on the heat flux
signature of the Madden—Julian oscillation and reached
a number of conclusions relevant to the work here. The
first authors restricted their attention to the evaporative
component of the flux and showed that, in the eastward
propagating oscillation, reduced upward flux tended to
lead the equatorial westerly wind anomalies and con-
vection, whileincreased upward flux tended to lag. Such
a pattern corresponds quite well with the dominant op-
timal calculated here (cf. Figs. 2a,b). Hendon and Glick
also considered the radiative component of the flux and
argued that it was generally greater than the evaporative
component. This radiative component was essentially
due to cloudiness changes that are generally coincident
with the westerly wind anomalies. Thus the latent heat
component of the flux is likely to add to error growth,
while the radiative component appears likely to be neu-
tral. Of course, it should be stressed that these conclu-
sions are tentative, and a more comprehensive study is
currently being planned.

Finally, it is worth emphasizing that the results de-
rived here were made using arelatively simple coupled
model (an “‘intermediate’” model). For this reason some
caution needs to be exercised in interpreting the results,
as they may be model dependent. Clearly our results
will need to be carefully compared with those obtained
with other skillful ENSO forecast models. Despite this
reservation, we feel that the results discussed here have
considerable credibility because the model from which
they have been obtained is particularly skillful at ENSO
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forecasting (see Kleeman et al. 1995) and is able to
produce an ENSO oscillation that is reasonably realistic
in both itszonal structure and its evolution (see Kleeman
and Power 1994).

APPENDIX
Positivity of the Stochastic Optimal Operator

We demonstrate here that the eigenvalues of the sto-
chastic optimal operator Z and the noise covariance op-
erator C are al nonnegative. Equivalently, we demon-
strate that these two operators are positive (Lipschutz
1974). First we note because of the definition of anorm
that X the norm kernel matrix is positive.

In the case of C, it is obvious that it is positive since,
in abasisin which this noise covariance matrix isdiagonal,
the diagonal elementsare simply the variances of thetrans-
formed noise fields (i.e., alinear combination of the noise
field at different spatial points), which are evidently non-
negative. In the case of Z, we note that because X is
positive it may be written in the form Y 1Y (see Lipschutz
1974). In addition, the time covariance matrix D is sym-
metric and all eigenvectors are nonnegative by the same
argument given above for C being positive and is hence
also positive. This implies that we can write

ENN — EMAEVA
and hence

n—1 7 u—1
Z =D EMB(u, A + 1)Y||D E™B(u, 7 + 1)Y|,
A=0 =0

which implies that it is the sum of a series of symmetric
matrices of the form HtH (note the summation over «).
A smple application of the theorem on p. 288 of Lipschutz
(1974) [this states that if an operator T is self-adjoint and
satisfies (T ¢, ¢) = 0O for all vectors ¢ then it is positive]
leads to the conclusion that Z itself is positive.
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