
Information Theory and Predictability
Lecture 6: Maximum Entropy Techniques

1 Philosophy
Often with random variables of high dimensional systems it is difficult to de-
duce the appropriate probability distribution from the given observations of
outcomes. We shall confront this problem in full force in the final lecture on
predictability later in the course. One approach to this due to Jaynes [2] and
later Mead and Papanicolou [5] is to first assume certain highly plausible prop-
erties of the random variable and then posit maximum uncertainty with respect
to all other properties of the distribution. Such an ansatz then often allows the
deduction of the desired distribution and is usually referred to as a maximum
entropy principle. Jaynes first used this principle in the context of statistical
mechanics and the assumed properties of the distribution were associated with
conservation principles connected with such quantities as energy and angular
momentum. Such ideas have also been applied to turbulent fluids (for geo-
physical applications see Salmon [6]) with some notable successes. Mead and
Papanicolou on the other hand considered the case where certain low order mo-
ments were assumed known from sampling and then the distribution consistent
with maximal ignorance concerning higher order moments deduced. We con-
sider this case first. We shall refer to the assumed properties as constraints and
the maximization of uncertainty shall be achieved via the entropy functional.
From a practical viewpoint the problem is one of constrained optimization.

2 Moment Constraints
Consider a finite set of polynomials {ri(x)} where x is an element of the con-
tinuous outcome space with (unspecified) probability density p(x) and i ≤ N .
Assume that the following relations hold∫

p(x)ri(x)dx = Mi (1)

where the Mi are called the moments. For convenience and completeness
we take r0(x) ≡ 1 and M0 = 1 to incorporate the further needed constraint
regarding p(x) being a probability density.

The problem then becomes to find p(x) subject to the requirement that the
associated differential entropy h(X) is maximized since this reflects maximal
ignorance or assumption concerning all other moments.
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The obvious method for solving this constrained optimization problem is to
use Lagrange multipliers for each of the constraints and maximize the augmented
functional with respect to p(x)

J ≡ −
∫
p(x) ln(p(x))dx+

N∑
i=0

λi

(∫
p(x)ri(x)dx−Mi

)
Taking the functional derivative with respect to p(x) and setting to zero we

get
δJ

δp
= − ln (p(x)) + 1 +

N∑
i=0

λiri(x) = 0

which implies that the maximum entropy distribution must have the form

p(x) = C(
−→
λ ) exp

(
N∑
i=1

λiri(x)

)
(2)

where the C are undetermined normalization “constants” which are also equal
to exp(1 + λ0). The Lagrange coefficients λi need to be determined by use of
the moment constraints which is in general a non-trivial task which we consider
below. The family of distributions of the form given by (2) is known as the
exponential family. Notice that as a subset it contains the Gaussian distributions
but is obviously much larger. We now show that this distribution determines
a unique maximum entropy distribution f of all distributions q satisfying the
moment constraints (1). Consider the differential entropy of q

h(q) = −
∫
q ln q

= −
∫
q ln( qf f)

= −D(q||f)−
∫
q ln f

≤ −
∫
q ln f

= −
∫
q

(
N∑
i=0

λiri + 1

)

= −
∫
f

(
N∑
i=0

λiri + 1

)
= −

∫
f ln f = h(f)

where the fourth line follows from the non-negativity of relative entropy;
the fifth because f is exponential and the sixth because q satisfies the same
moment constraint (1) as f does. Note that not only does this show exponential
distributions maximize the entropy (subject to the moment constraint) they are
unique in this since the inequality in this argument only becomes an equality
when q = f exactly again by the relative entropy theorem.
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3 Simple examples

3.1 Gaussian distributions
Suppose we restrict ourselves to polynomials ri(x) of order two or less. In such
a case all moments can be written in terms of the means and covariances of
a vector random variable. Additionally it is obvious from the generic form of
the exponential family restricted to second order polynomials that they cover
Gaussian distributions only. The Lagrange multipliers can be obtained from the
general form of a Gaussian which is

p(−→x ) =
1√

(2π)ndet(σ2)
exp

(
−1

2
(−→x −−→µ )

t [
σ2
]−1

(−→x −−→µ )

)
where the σ2 is the covariance matrix and µ the mean vector. The moment

constraints are easily converted to mean and covariance constraints. Insertion
in the above form then gives the appropriate λi. Note that the normalization
constant C(

−→
λ ) is also determined by the same sort of procedure. The maximum

entropy formulation for Gaussian distributions is revealing as it says that max-
imal ignorance with regard to moments higher than two implies the Gaussian
distribution.

3.2 One sided one dimensional exponential distribution
Suppose we restrict ourselves in one dimension to non-negative x for our random
variable X and further suppose we constrain the mean of X to always be µ. The
maximum entropy distribution in such a case must have the form λ exp (−λx)
(for proper normalization). Substituting into the moment constraint shows that
the Lagrange multiplier must be 1/µ. An interesting interpretation of this result
is as a vertical column of gas in the Earth’s atmosphere. The potential energy
(PE) of a small parcel of air at height z with cross sectional area unity is

∆PE = ρ(z)gz∆z

where ρ is the density and g is the acceleration due to gravity. The integrated
PE of the whole column is thus

PE = g

∫ ∞
0

ρ(z)zdz

Now if we further assume that the density is proportional to the probability den-
sity of an individual gas molecule as seems reasonable we see that an assumption
of a fixed potential energy for the column amounts to the first moment constraint
just discussed. Thus one might expect the density to exhibit the exponential
fall off with height derived above which indeed it does approximately. In order
to get a more precise description of the gas we need to include further moment
constraints. In particular the mean kinetic energy which is proportional to local
temperature could be used as a constraint of molecule momentum (as opposed
to height). We discuss this particular constraint further below.
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4 The Legendre transformation

4.1 Information geometry
The exponential family of distributions we met above is an example of a pa-
rameterized set of distributions where the Lagrange multipliers play the role
of the parameter vector. Another example is the class of mixture distribu-
tions. Suppose we select a set of N fixed distributions pi (for example a series
of Gaussians with different means and covariances). Now form the following
parametrized family of distributions:

q(−→α ) ≡
N∑
i=1

αipi

with αi ≥ 0 and
N∑
i=1

αi = 1 in order to ensure q(−→α ) is a probability den-

sity. This family is called a set of mixtures and is parametrized by the vector
−→α . Consider now a general class of parametrized distributions p(x,−→θ ). The
relative entropy was identified in earlier lectures as a “distance” function on dis-
tributions. Let us now make this a little more precise. Suppose we consider
a small perturbation to a particular parameter set and compute the resulting
relative entropy between the perturbed and unperturbed distributions. Write

θ′i = θi + εvi

and assume ε small. Now expand ln p(x,θ′) as a Taylor expansion in the
small parameter ε

ln p(x,θ′) = ln p(x,θ) + εvi
1

p(x,θ)
∂p(x,θ)
∂θi

+ ε2

2 vivj

∂2p(x,θ)
∂θi∂θj

p(x,θ)− ∂p(x,θ)
∂θi

∂p(x,θ)
∂θj

p2(x,θ) +O(ε3)

where we are using the summation convention for Latin indices. Now sub-
stitute this into the expression for D(p(θ)||p(θ′)) to obtain

D(p(θ)||p(θ′)) = −εvi ∂
∂θi

∫
p(x,θ)dx− ε2

2 vivj×[
∂2

∂θi∂θj

∫
p(x,θ)dx−

∫
p(x,θ)∂ ln p(x,θ)

∂θi

∂ ln p(x,θ)
∂θj

dx
]

+O(ε3)

The first two terms vanish due to the integral property of probability densi-
ties and the third is a symmetric billinear form involving the so-called symmetric
Fisher information matrix G = (gij):

D(p(θ)||p(θ′)) = ε2

2 vivjgij(θ) +O(ε3)

gij(θ) ≡
∫
p(x,θ)∂ ln p(x,θ)

∂θi

∂ ln p(x,θ)
∂θj

dx
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The Fisher information matrix plays a central role in mathematical statistics
where it is crucial to the theory of fitting of parametrized distribution families
to data (it provides a lower bound on error estimates for such parameters).
Here we see it also plays a crucial role in defining a local distance function
on parametrized distributions. In fact because of the above expansion it may
be identified as the metric tensor in the usual differential geometric sense. A
change of parameters describing the distributions corresponds with a change of
coordinates in the usual differential geometric sense and the Fisher information
matrix transforms as a second rank (metric) tensor under this change. Con-
siderable more detail on this elegant formalism may be found in the book by
Amari and Nagoaka [1].

4.2 Legendre Potential
We consider now the family of exponential distributions which have a set of
coordinates (in the sense of the previous subsection) given by the vector of
Lagrange multipliers. Among this family is the desired maximum entropy dis-
tribution which will be specified exactly if we find the appropriate vector −→λ .
To achieve this objective we introduce what we term the Legendre potential:

Γ(−→m,−→λ ) ≡ lnZ(
−→
λ )− (−→m,−→λ )

where Z is referred to as the partition function because of the connection of
this formalism with statistical mechanics (see below). It is defined by

Z(
−→
λ ) = C−1(

−→
λ ) =

∫
exp

(
N∑
i=1

λiri(x)

)
dx (3)

Differentiation of Γ with respect to the Lagrange multipliers λi shows that
is has an extrema when the moments of the exponential distribution associated
with λi are equal to mi. By considering the second derivatives one may also
show that this stationary point is convex and thus corresponds to a minimum (a
proof of this assertion can be found1 in Mead and Papanicolou [5]). Further at
this minimum Γ is easily seen to be the differential entropy of the correspond-
ing exponential distribution. We therefore have an algorithm for finding the
maximum entropy distribution:

1. In the Legendre potential set mi = Mi the desired moments.

2. Choose a particular (arbitrary) set of λi which because they have different
moments will not correspond to a minimum value for the potential.

1Actually it easily checked that the Hessian matrix ∂2Γ
∂λi∂λj

= 〈ri(x)rj(x)〉−〈ri(x)〉 〈rj(x)〉
at the critical point where the angle brackets denote expectation with respect to the extrema
(maxent) distribution which demonstrates that there is usually a minimum since the covari-
ance matrix is non-negative definite. Only degenerate situations avoid this conclusion. Note
also that this Hessian is actually just twice the Fisher information matrix/metric discussed
previously for the exponential family of distributions under consideration.
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3. Iterate the λi using a “steepest descent” or related numerical algorithm.

4. The nature of second derivative Γ ensures that usually a unique minimum
will be (eventually) found which will be the maximum entropy exponential
distribution and the minimum value will be that entropy.

It is also easy to check that the discrepancy in Legendre potential between that
for any particular choice of λi and the minimum value is actually the relative
entropyD(p||q) where p is the maxent distribution while q is the exponential dis-
tribution with parameters λi. This also establishes that the maxent distribution
is a global minimum for the Legendre potential.

This problem will only be well behaved in general if there is sufficient con-
vexity in all directions of parameter space. Note also that the method requires
the calculation of Z which is a multidimensional integral. For high dimensions
this calculation can have inaccuracy making the optimization problem badly
behaved.

Finally observe that this optimization implies a unique correspondence be-
tween λi and Mi and so the moments rather than the Lagrange multipliers
could be used as “coordinates” in the space of exponential distributions. This
coordinate transformation is called a Legendre transformation and can be dealt
with using the information geometry formalism introduced above. Such trans-
formations are very important in equilibrium statistical mechanics.

5 Connection with equilibrium statistical mechan-
ics

Statistical mechanics is the study of very large collections of particles. In gen-
eral only the statistics of such particles are known experimentally and these are
referred to generically as macro or thermodynamical properties as opposed to
micro properties that apply to individual particles. Statistical mechanics is a
theory for deriving macro properties from the molecular properties using statis-
tical methods. Entropy can be made a central organizing principle in deriving
such a theory. This is done by saying that the macro properties of the system
should be taken as compulsory but then that one should assume as little as
possible regarding the remaining microvariables of the system which make up
the complete dynamical description. This amounts, of course, to some kind
of constrained maximum entropy problem. Such an ansatz may be shown to
work well in the case of macroscopic equilibrium where it forms the basis for
conventional equilibrium statistical mechanics. Note that it also implies that
a system not in equilibrium will not be in a state of maximum entropy so will
have smaller entropy than the equilibrium state.

In order to compute probability distributions of interest in statistical me-
chanics one considers various system “setups” which impose the above mentioned
macro constraints on the variables of the system in different ways. The set of all
configurations of a dynamical system consistent with such constraints is termed
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an ensemble. One such ensemble consists of a closed system subject to a series
of conservation principles. The best known such principle is energy but several
others such as momentum and angular momentum are possible as well. The con-
servation principle then functionally constrains the system variables. For exam-
ple the total energy of all molecules within a gas is assumed fixed. The ensemble
of configurations consistent with these constraints is called microcanonical. In
general many of the macrovariables correspond with conserved quantities within
such a system. If one restricts the variables of the system so that the conserva-
tion constraints are met then the maximum entropy ansatz above corresponds
with assuming a uniform distributions for the remaining microvariables. Put
another way, the probability distribution of the microcanonical ensemble mem-
bers is uniform. It is possible to rigorously prove that this conclusion2 is true
in certain dynamical systems which are termed ergodic. An important exam-
ple being a set of colliding hard balls enclosed within a box with hard walls.
Results of this type called billard dynamical systems have had a number of er-
godic results proven in recent times beginning in the the 1960s with Sinai see
[7]. In a system which satisfies the Liouville condition ∇ •A = 0 (see previous
lecture) one can also show that this uniform distribution is time invariant i.e.
an equilibrium distribution. A particularly clear introduction to this large area
of ergodic theory may be found in [3].

Computing relevant probability distributions in such a way can be chal-
lenging because one needs to take into account the geometry of the conserved
variable constraints. For this reason and for reasons of physical realism open
rather than closed setups are more typically considered. Here one assumes that
the system exchanges specified conserved quantities with the environment and
is in equilibrium with it. Clearly now unlike the closed case the exchanged
conserved variables may not be constant and thus cannot be used directly as
thermodynamical variables however if the concept of equilibrium is to make sta-
tistical sense then the mean values of such variables should be fixed. By a mean
here it is meant with respect to the ensemble of identically prepared systems
which could be a series of realisations over time. Such means then are function-
ally related to important thermodynamical or macrovariables. When energy
alone is allowed to exchange in this way the set of configurations is termed a
canonical ensemble. If in addition the total number of particles is also allowed
to exchange then the set of configurations is termed a grand canonical ensem-
ble. Notice for the open type of configuration the constraints on the system
are statistical rather than absolute as they are in the closed case. The open
setup also evidently corresponds directly with the mathematical case consid-
ered above. Thus an invocation of the maximum entropy principle when the

2One needs to be rather careful from a mathematically technical viewpoint in stating this
result. Indeed there can exist members of the microcanonical ensemble that are never visited
in any equilibrium configuration. These have however measure zero. The hypothesis that
all microcanonical ensemble members are “equally likely” was first stated by Boltzmann and
was called the ergodic hypothesis. It was shown to be strictly untrue around 1913 but was
replaced by the quasi-ergodic hypthosesis which very roughly means any coarse graining of
the submanifold with equal measure will have equal probability measure. This was proven by
Birkhoff and Von Neumann in the 1930s. More details in the review [3].
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conserved variables are polynomials of state variables will lead to a variety of
exponential family distributions. Interestingly in the limit of a very large num-
ber of particles it can often be shown (often numerically) that the probability
distributions for both the open and closed configurations converge and this is
actually a general assumption in statistical physics. The canonical and grand
canonical ensembles were first introduced by J. Willard Gibbs over 100 years
ago and the equilibrium probability distributions/measures are commonly called
Gibbs measures. More details on this from a physics perspective can be found
in standard texts on statistical mechanics such as [4].

Let us consider a specific very simple example. Suppose we have a collec-
tion of hard colliding classical particles with momentum pi which is at rest on
average. This is called an ideal gas. The total energy of such a system of N
particles3 is given by its kinetic energy.

E =
1

2m

N∑
i=1

p2i (4)

As mentioned previously for the canonical ensemble one then assumes that in
equilibrium the mean energy should remain fixed. Note that for the microcanon-
ical ensemble all states must be restricted to lie on a momentum hypersphere
with radius

√
2mE. It is relatively easy to establish then that the maximum

entropy distribution is uniform on that hypersphere and the ergodic results of
Sinai and co-workers mentioned above allow this to be made rigorous. Convert-
ing such a hypersphere uniform distribution to a marginal distribution for the
momentum of an individual particle is however a complicated exercise.

Now suppose instead one wished to deduce the probability distribution for
all particles momentum q(p1, p2, p3, . . . , pN ) for the canonical ensemble. The
maximum entropy principle can be used subject to the constraint that the sum
of second moments of momentum is fixed at some value (2m times the mean
energy of the open system). One can deduce using our arguments earlier that
this distribution should be Gaussian in momentum and of a particular form
which turns out to be the so-called Boltzmann distribution. Associated with
this constraint is a Lagrange multiplier which turns out to be proportional to
the inverse absolute temperature of the gas. Notice that the thermodynami-
cal quantity is the temperature rather than the total energy which fluctuates.
Naturally the form of the energy in equation (4) can be generalized to more com-
plex situations in which the particles interact with external potentials and with
themselves as well as have different masses (i.e. they are different molecules).
We saw above an example of when there is an external gravitational potential.
The maximum entropy principle means that the resulting distribution will be-
long to the exponential family. The integral of this (unnormalized) exponential
function can be identified with the usual partition function of traditional statis-
tical mechanics (see equation (3) above) and the derivatives of this with respect
to the parameters describing energy or the associated Lagrange multipliers will

3N is usually huge for common applications and is related to the well known Avagadro’s
number which is of order 1024 .
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then give us many thermodynamical properties of interest for the system. Other
macro quantities associated with conservation laws will give us more elaborate
maximum entropy problems and other thermodynamical quantities associated
with the new Lagrange mulipliers. One example is particle number and the
grand canonical ensemble explained above. The associated new Lagrange muli-
plier is then proportional to the quotient of the so-called chemical potential
and absolute temperature. The conclusions derived from this approach have
been extensively tested and verified in a very large variety of different physical
systems.

This methodology for equilibrium statistical mechanics can also be applied
successfully to the study of turbulent fluids (as a starting point see Salmon [6]).
Certain fluids have conservation principles not just associated with energy but
also other quantities such as enstrophy which is associated with fluid angular
momentum and so one may add additional statistical constraints which results
in a richer probability distribution structure. There are widespread applications
in the literature.
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