
Information Theory and Predictability.
Lecture 4: Optimal Codes

1. Introduction

We discussed codes briefly in Lecture 1. We now turn to the subject in detail.

Definition 1. An encoding c(x) for a random variable X is a mapping from the
set of outcomes of the random variable {x} to a string of symbols from a finite
alphabet of D distinct symbols.

For most of this lecture we will consider for clarity a two member bit alphabet
{0, 1}.

Definition 2. The extension of an encoding is the mapping from an ordered string
of outcomes to an ordered string of symbols from the code alphabet given by
c(x1x2 . . . xn) ≡ c(x1)c(x2) . . . c(xn)

Associated with each encoding is a length which is the number of symbols in
the code string. We write this as l(c(x)). For a particular random variable we can
await a series of outcomes and for every one transmit an encoding. This will result
in a continually expanding string of symbols given by the code extension defined
above. We term this a transmission. Asymptotically i.e. given a very large number
of outcomes the average length of this transmission per outcome will approach a
limit governed by the probability function of X.

Definition 3. The expected length L of an encoding of X with associated proba-
bility function p(x) is given by

L =
∑
x

p(x)l(c(x))

In this lecture we are going to compare L to HD(X). We consider some illustra-
tive examples:

Suppose we have D = 2 and the following probabilities and encodings
Outcome Probability Encoding

1 1
2 0

2 1
4 10

3 1
8 110

4 1
8 111

A quick calculation here shows that H2(X) = L = 1.75. Note that the less
probable outcomes are assigned longer codes which seems like a good strategy
intuitively for reducing L.

Suppose now we take D = 3 and the following setup
Outcome Probability Encoding

1 0.2 0
2 0.2 10
3 0.2 21
4 0.2 20
5 0.2 11

1

2

It is easy to calculate H3(X) ≈ 1.465 < L = 1.8.
Finally consider the case of the Morse code which has D = 4 as it has a dash;

a dot and two types of spaces (words and letters). Using the set of all books to
define the (approximate!) probabilities of letters and spaces in an arbitrary Morse
transmission one can in principle calculate H4(X) as well as L and one finds that
the latter is greater. Note that the designers of this code attempted for practical
reasons to reduce L by making sure that less likely letters generally have longer
sequences of dots and dashes.

Codes are not all equally useful which leads to the following definitions.

Definition 4. 1. An encoding is non-singular if the mapping c(x) is one to one
i.e. x 6= x′ ⇒ c(x) 6= c(x′). 2. An encoding is uniquely decodeable if its extension to
any transmission is non-singular. 3. An encoding is instantaneously decodeable if
the string of characters transmitted is (uniquely) decodeable “on the fly” whenever
an additional codeword is transmitted. In other words the code is cumulatively and
immediately translated as any new codeword is read.

It is easily checked by example that these three classes of encoding include (prop-
erly) the later ones. In addition it is also easily seen that an encoding is instanta-
neously decodeable iff no code c(x) is a prefix of another c(x′). This follows because
if a codeword is received that is a prefix of another then immediate translation is
not possible and one needs to wait to see whether the longer codeword was meant
rather than the prefix. Clearly if any codeword is not a prefix of another one need
not wait and so the code is instantaneously decodeable. Looking at the first two
code examples above we see that they are both instantaneously decodeable since
no code is a prefix of another.

2. Basic Coding Results

Clearly from a practical viewpoint a non-singular encoding is essential while an
instantaneously decodeable one is desirable. In addition there is a clear utilitarian
value in finding an instantaneously decodeable encoding of minimal expected length
L.

Regarding such an objective we can establish the following known as the Kraft
Inequality.

Theorem 5. Consider an instantaneously decodeable encoding with a D category
alphabet and with code lengths li = l(c(xi)) then

(2.1)
∑
i

D−li ≤ 1

Conversely if one finds a set of integers {li} satisfying (2.1) then there is an
instantaneously decodeable encoding with code lengths given by this set.

Proof. We establish the result for the case that the random variable has finite
outcomes. The extension to the countably infinite case is fairly straightforward
and can be found on page 109 of [1].

Consider a tree with n levels and where each branch point results in D branches.
We can use such a tree to enumerate all the codewords if we label each branch set
with all D members of our alphabet. Obviously if no codeword is a prefix of another
(the condition for the encoding to be instantaneously decodeable) then any node
which is a codeword cannot have any codewords at higher levels. Now suppose lmax

3

is the maximum codeword length then the tree at this level must have a total of
Dlmax branches. Consider the codewords at level li in the tree. They must have a
total of Dlmax−li descendant branches at the lmax level of the tree (all of which are
of course not codewords because of the assumed prefix property). Also obviously
because of the structure of a tree all these descendant branch sets at the lmax level
must be disjoint. Thus adding up all these disjoint descendants and comparing
with the total number of possible branches at the lmax level then it is clear that

(2.2)
∑
i

Dlmax−li ≤ Dlmax

which is equivalent to the Kraft inequality. Conversely suppose we have a set of
(reverse ordered) {li} which satisfy equation (2.2) then commencing at the bottom
of the set of branches at level lmax and proceeding across this tree level we can
gather successively Dlmax−l1 , Dlmax−l2 , . . . , Dlmax−lN set of branches where N is
the total number of codewords. Because of the inequality we never run out of
branches. Some thought shows that each of these set of branches has a unique
ancestor at the li level of the tree which we identify as a codeword by labelling the
whole tree in the obvious way. This constructs an encoding for which clearly no
code is a prefix of another. �

The Kraft inequality now allows us to establish a lower bound on the expected
length L for instantaneously decodeable encodings and also determine when this is
reached. The proof is instructive as to the power of the relative entropy functional.

Theorem 6. Suppose we have an instantaneously decodeable encoding for a random
variable X with a B member coding alphabet then the expected length satisfies

L ≥ HB(X)

with equality achieved if and only if the probabilities and codeword lengths satisfy

(2.3) pi = B−li

Proof. The difference ∆ between L and HB(X) is

∆ =
∑
i

pili +
∑
i

pi logB pi = −
∑
i

pi logB B−li +
∑
i

pi logB pi

Defining a new probability ri ≡ B−li/
∑
j

B−lj then we can write

∆ =
∑
i

pi logB

pi
ri
− logB

∑
j

B−lj = D(p||r)− logB

∑
j

B−lj

The two terms at the right here are non-negative because of the property of
relative entropy as well as the Kraft inequality. They will vanish if and only if
pi = ri and

∑
j
B−lj = 1 again by the properties of relative entropy. �

It is clear that the lower bound will not always be achievable for a given random
variable X and coding alphabet B since equation (2.3) may not be satisfiable for
any set of li. Notice that our first example above does in fact satisfy (2.3) which
explains why its expected length is exactly the entropy. There remain therefore two
important questions: What exactly is the practical lower bound and how can it be
achieved? We begin with the first question.

4

Theorem 7. Suppose we have the conditions of the previous theorem then the
minimal possible expected length L∗ satisfies the inequality

(2.4) HB(X) ≤ L∗ ≤ HB(X) + 1

Proof. For each pi it is obviously possible to find a unique li > 0 such that B−li+1 ≥
pi ≥ B−li . The right inequality also implies that the li satisfy the Kraft inequality
and so correspond with an instantaneously decodeable encoding. Taking logarithms
to the base B of both inequalities leads to logB(1/pi) ≤ li ≤ logB(1/pi) + 1 and
summing this after multiplication by pi shows that the expected length of this
particular encoding satisfies the inequality of the theorem. The optimally short
code must as well because of this and the previous theorem. �

Note that the construction in the proof of the last theorem allows one through the
tree introduced earlier to construct a code which although not necessarily optimal
does satisfy equation (2.4). It is known as the Shannon code.

Thinking back to the Morse Code example introduced above it is rather evident
that at times one may not actually have the true probability to hand and may be
forced to guess it usually on the basis of earlier observations of the random variable
(e.g. using the set of all books in our example). If an incorrect probability for
a random variable is assumed then using this to perform encoding will intuitively
incur a penalty in the expected length. Roughly speaking this penalty is the relative
entropy of the correct and incorrect probability functions. More precisely we have:

Theorem 8. Suppose we assume the probability is qi when it is in fact pi then the
resulting Shannon code expected length L will satisfy

H(p) + D(p||q) ≤ L ≤ H(p) + D(p||q) + 1

Proof. It is clear that the Shannon code assigned according to the incorrect qi has
codeword lengths satisfying

li ≥ − log qi

and so it has expected length

L =
∑
i

pili ≥ −
∑
i

pi log qi = H(p) + D(p||q)

and the other reverse inequality can be obtained by using the other inequality
from the Shannon code proof. �

The relative entropy has therefore the concrete interpretation as the penalty for
incorrectly assuming a particular probability holds when in fact another does. We
shall revisit this interpretation later in the course.

As we saw earlier instantaneously decodeable encodings are a subset of uniquely
decodeable encodings so one may try to obtain a shorter expected length by relaxing
the instantaneous assumption. Rather surprisingly a result due to McMillan [3]
shows in fact that such codes also satisfy the Kraft inequality i.e. Theorem 5 and
consequently that they offer no further optimality for expected length. This follows
because there must exist another instantaneously decodeable code which has the
same expected length by the constructive proof of Kraft’s inequality. Interested
readers can find the rather technical proof in [1].

5

3. The Huffman Optimal Code

The Shannon code discussed in the previous section is not always optimal in
terms of minimizing the expected length. There exists however an algorithm due
to Huffman [2] which can be used to construct one particular optimal code (there
may be many). In the following we restrict ourselves for clarity to codes with two
symbols (bit codes) but the method extends with some minor modification to finite
symbol codes. The algorithm works as follows:

Order the outcomes x1, x2, . . . xm so that p1 ≤ p2 ≤ . . . ≤ pm−1 ≤ pm and con-
struct a tree bottom up as follows: Combine the least likely two outcome categories
x1 and x2 and then reorder the new m−1 probabilities. This operation results in a
higher tree level with one less category. Repeat the operation to further reduce the
number of categories (each reduction is a higher tree level) and iterate until only
one category remains containing all outcomes. Looking back down the complete
tree for every split of categories assign an additional 1 to all outcomes from one of
the newly split category and a 0 to all the other outcomes from the other newly
split category. Continue down to the bottom of the tree where all splits are done
and one has recovered all the original categories. A Huffman codeword is profitably
viewed as a set of instructions as to which branch to take moving down from the
1 node “tree top” with instructions starting at the left. Thus a 1 says take the left
branch (when a split occurs) while a 0 says take the right branch. The instructions
finish when the branch taken hits them outcome level. Obviously these instructions
(and hence the codeword) point to a unique outcome. Additionally suppose one
codeword is a prefix of another then the first set of instructions imply the branch
trip finishes at level m but the second codeword implies the this same trip should
have ended at level j where j < m which is obviously impossible so the Huffman
code is prefix free.

We now show that the Huffman encoding is optimal.

Lemma 9. There exists an optimal instantaneous encoding termed a canonical
optimal encoding with the following three properties

(1) If pj > pk then lj ≤ lk ∀j, k
(2) The longest codewords are equal in length.
(3) Two of the longest codewords differ only in the final bit and correspond

with the two least likely outcomes.

Proof. Exchange codewords for j and k. It is easy to check that the new code will
have an additional expected length of (pj−pk)(lk− lj) which shows that if property
1 did not hold then the new code would have a shorter length implying that the
original code could not be optimal.

Secondly if the longest two codewords were not equal in length we could trim
the longest so they were and not violate the prefix property as well as producing a
shorter code. This is therefore not possible if the code is optimal.

Thirdly observe that any of the longest codewords of length n must have a
“sibling” in the sense that the two share an n−1 character prefix. If that was not the
case we could truncate such a codeword by deleting the last bit and still retain the
prefix property and hence produce a new instantaneous code with shorter expected
length. We can now shuffle all the codewords of length n between outcomes without
changing the expected length of the code. We can do this in order to ensure that the
least likely outcomes are paired (i.e. share an n− 1 character prefix) which ensures

6

that the last part of property 3 holds. The least likely outcomes must be have the
longest length n otherwise property 1 won’t hold. Notice that this shuffling without
effect on expected length results in many different optimal codes not all canonical
because property 3 does not always hold. �

We can now prove the main result:

Theorem 10. The Huffman encoding C∗ is optimal in the sense that if C ′ is any
other uniquely decodeable encoding then L(C∗) ≤ L(C ′) where the functional L is
the expected length of an encoding.

Proof. By induction. First observe that earlier results allow us to restrict our
attention to instantaneously decodeable codes.

Second suppose we have the following n member ordered probabilities p ≡
{p1, p2, . . . , pn} and the associated n − 1 member p′ ≡ {p1, p2, . . . , pn−1 + pn}.
Suppose we have an optimal encoding defined on p′ and call it C1(p′) and further
a canonical optimal code on p denoted by C2(p). We can extend the C1 from p′ to
p by adding two different bits to the code for pm−1 +pm. Call this new code C3(p).
We can also restrict the code C2 from p to p′ by taking the codewords for pn−1 and
pn and removing their last bit. This results in a unique new code C4(p′) by the third
property of the lemma above. Both new codes are still instantaneously decodeable
by their construction. Simple calculation shows that L(C3) = L(C1) + pn−1 + pn
and L(C4) = L(C2)− pn−1 − pn which shows that

L(C4)− L(C1) = L(C2)− L(C3)

since C1 and C2 are optimal by assumption then both sides of this equation must
be zero implying that the extension code C3 must also be optimal for p. Thus we
have a well defined method for preserving optimality as we split outcome classes as
we do in the Huffman algorithm. Since an optimal code for two outcomes is obvious
(and the first step of the Huffman algorithm) we are done by induction. �

References

[1] T.M. Cover and J.A. Thomas. Elements of information theory. Wiley-Interscience, New York,
2nd edition, 2006.

[2] D.A. Huffman. A method for the construction of minimum redundancy codes. Proc. IRE,
40:1098–1101, 1952.

[3] B. McMillan. Two inequalities implied by unique decipherability. IEEE Trans. Inf. Theory,
IT-2:115–116, 1956.

