
Information Theory and Predictability.
Lecture 2: Important functionals and their

properties

1. Elementary Properties of Entropy

We can write H(S) as

H(S) =
∑
s∈A

p(s) log

(
1

p(s)

)
and since by the definition of a probability function 0 ≤ p(s) ≤ 1 this sum is

term by term non-negative and hence H(S) ≥ 0. Obviously the minimum possible
value 0 is attained when p(s) = 1 for some s ∈ A since all other p(s) = 0 and hence
no other terms contribute. This case corresponds to certainty for the value of S.

What about the maximum value? We determine this (for the finite category
case) using Lagrange multipliers because there is the constraint that

∑
p(s) = 1.

The appropriate Lagrange functional is

F (p(1), . . . , p(N)) = H(S)− λ

(
N∑
i=1

p(s)− 1

)
and differentiating this shows critical points occur when the p(s) are all identical.

Elementary calculus tells us that if a (well behaved) function is defined on a closed
domain then it attains a maximum either at the critical points or on the domain
boundary. Here since we are dealing with probabilities, the boundary consists of
points with a p(s) = 0 which is a problem with N −1 outcomes. It is easily checked
that at the critical point identified we have H = log(N) which is increasing with
outcome size. Thus this must be the absolute maximum. Thus entropy is maxi-
mized for the uniform probability function which is intuitive since such a scenario
means maximum uncertainty for S. As stated the value for the uniform distribu-
tion of N categories is log(N) which is increasing with category number consistent
with Shannons first axiom. This is also the definition of entropy for equilibrium
statistical mechanics of a gas where a uniform probability distribution of particle
states is a common assumption. (see future Lecture).

2. Extension to many random variables

If one has two or more random variables then the number of possible categories
for all the random variables obviously goes up multiplicatively (N1N2 . . . Nk) as
new random variables are added. This suggests the natural definition

(2.1) H(X1, X2, . . . , Xk) ≡ −
∑

x1,x2,...,xk

p(x1, x2, . . . , xk) log (p(x1, x2, . . . , xk))

where the summation extends over all possible categories.
A subject of common interest is the interaction between different random vari-

ables and one often considers conditional probabilities. Here one fixes the value
of several random variables and considers the effect of this on the probability of
the unfixed variables. This conditional probability function is the quotient of the

1



2

full probability function divided by the marginal distribution of the variables held
fixed. Symbolically we have

p(x1, . . . , xj |xj+1, . . . , xn) =
p(x1, . . . , xn)

p(xj+1, . . . , xn)

p(xj+1, . . . , xn) ≡
∑

x1,...,xj

p(x1, . . . , xn)

This concept can be extended naturally to the notion of entropy/uncertainty. If
one fixes the final n − j selected variables with certain values then the entropy of
the remaining j variables can be calculated in the obvious way:

H(X1, . . . , Xj |Xj+1 = xj+1, . . . , Xn = xn) =

−
∑

x1,...,xj

p(x1, . . . , xj |xj+1, . . . , xn) log (p(x1, . . . , xj |xj+1, . . . , xn))

Now each choice of fixed values has a particular, marginal, probability associated
with it so it is natural to weight the above entropies by these probabilities and form
a sum to give the expected new entropy in the case of fixed variables. This is referred
to as the conditional entropy:

H(X1, . . . , Xj |Xj+1, . . . , Xn) ≡
∑

xj+1,...,xn

p(xj+1, . . . , xn)H(X1, . . . , Xj |Xj+1 = xj+1, . . . , Xn = xn)

= −
∑

x1...,xn

p(x1, . . . , xn) log (p(x1, . . . , xj |xj+1, . . . , xn))(2.2)

Simple manipulation of this definition, the properties of conditional and marginal
probabilities given above as well as equation (2.1) allows the derivation of the
following “chain rule” for entropy:
(2.3)
H(X1, . . . , Xj , Xj+1, . . . , Xn) = H(Xj+1, . . . , Xn) +H(X1, . . . , Xj |Xj+1, . . . , Xn)

This has the straightforward interpretation that on average fixing several ran-
dom variables reduces the uncertainty of the complete system by the uncertainty
associated with these fixed variables. Note that the entropy of the many variable
system is not order dependent so switching order of variables in the chain rule gives
rise to a whole series of further identities which we shall use below.

Another interesting entropy chain rule is obtained iteratively from equation (2.3).
Firstly we have

H(X1, . . . , Xn) = H(Xn|Xn−1, . . . , X1) +H(X1, . . . , Xn−1)

and then repeatedly breaking down the second remainder term on the right side
in the same way we obtain

(2.4) H(X1, . . . , Xn) =

n∑
k=1

H(Xk|Xk−1, . . . , X1)

3. RELATIVE ENTROPY AND MUTUAL INFORMATION

3.1. Definitions. It is often useful to compare probability functions and then a
concept of “distance” between distributions becomes useful. One place where this
plays an important role is in the theory of learning: Suppose that before a learning
experience occurs, our best estimate about a particular random variable X, based
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on all previous learning, is that it has a probability function of q. Following another
learning experience we revise our estimate to p. The change in the probability
function as a result of this experience is clearly a measure of the amount of learning
that has occurred.

Suppose that we attempt to encode, in the way discussed in the previous Lecture,
assuming that X has a probability function q when in fact it turns out to have a
function p. Obviously this will mean that we will use a code that it is longer than
it needs to be. The extra length in the code is the relative entropy of p and q and
will be shown in Lecture 4 to be given by:

(3.1) D(p||q) ≡
∑
s∈A

p(s) log (p(s)/q(s))

In order that this be defined we need to assume that terms in the sum for which
p(s) = 0 do not contribute and if there exist an s such that q(s) = 0 when p(s) 6= 0
then the relative entropy is undefined i.e. we require that p(s) 6= 0 ⇒ q(s) 6= 0
which means that the set of outcomes with non-zero p is contained in that with
non-zero q. Relative entropy is always non-negative as we shall see below and is
used to measure learning quantitatively. The learning paradigm described here
derives from Bayesian statistics where q is called the prior while p is referred to as
the posterior.

Note that the relative entropy is not symmetric (D(p||q) 6= D(q||p)) nor does
it satisfy the triangle inequality (i.e. it is not the case necessarily that D(p||q) ≤
D(p||r) + D(r||q)) so it is not a distance function in the usual sense (it defines a
pre-metric not a metric). On the other hand as p→ q it does satisfy these relations
to a very good approximation . This reflects the fact that there is a very natural
connection of information theory with differential geometry and in that one can
consider relative entropy as a generalized distance (a divergence) in the (curved)
space of probability distributions (see [1]).

Another place where the “distance” between probability functions is important is
in statistics. Here one is often interested in the relationship between two (random)
variables. Introductory courses in this field spend considerable time on the concept
of correlation as a measure of relationship but this is really only a complete mea-
sure when the functions are Gaussian. For general functions the relevant concept
is mutual information which is defined as the relative entropy between the joint
function of the two variables and that which would apply if they were completely
independent:

(3.2) I(X;Y ) ≡
∑
s∈A

∑
t∈B

p(s, t) log

(
p(s, t)

p(s)p(t)

)

where A and B are the sets of outcomes for X and Y. Complete independence
occurs when p(s, t) = p(s)p(t) ∀s,t.

Intuitively mutual information measures the amount of information that two
random variables have in common. It has an interesting connection to ordinary
entropy and its conditional form discussed above. In particular it is quite easy to
show using equations (2.2) and (3.2) that the following interesting relation holds:

(3.3) I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)
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which says that the mutual information is the average reduction in uncertainty
of X due to knowledge of Y or symmetrically it is the reduction of uncertainty of
Y due to knowledge of X.

3.2. Basic Properties. The concavity of the logarithm function enables us to
derive important basic properties of the entropic functionals. Recall a real function
f(x) is convex on (a, b) if every x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1 then

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2)
and a function is concave if −f(x) is convex. Basic calculus shows that convexity

of twice differentiable functions can be determined by examining the sign of their
second derivative on (a, b). If it is non-negative the function is convex and obviously
if it is non-positive it is concave. Since the second derivative of log(x) is − 1

x2 it is
concave on its entire domain.

An important concept in probability theory is the expectation functional of real
functions defined on the outcome space of a random variable S:

E(f) ≡
∑
s∈A

p(s)f(s)

which intuitively gives the average value of the function after many trials of the
random variable. Note that it is easy to extend the real function f to define a
function f(S) of the random variable S: The outcome space of f(S) is just f(s)
with probability p(s).

Now let the outcome space be labeled by the reals then we can prove:

Theorem 1. (Jensens Inequality) If f is a convex function and X a random vari-
able with outcomes labeled by the reals then

E(f(X)) ≥ f(E(X))

Equality implies that X is certain with value E(X).

Proof. By induction on the size of the outcome space. If this is two i.e {x1, x2}
then by the convexity of f we have easily that

f(p1x1 + p2x2) ≤ p1f(x1) + p2f(x2)

(since p2 = 1 − p1) which is what we required. Now suppose the result holds
on all outcome spaces of size k − 1 we show that it holds for all spaces of size k.
Consider this latter situation with probability values pi satisfying

∑k
i=1 pi = 1. It

is easy to see that the new set of k − 1 values p
′

i ≡ pi/(1− pk) is a probability set
for a space of size k − 1 since

∑k−1
i=1 p

′

i = 1. Now we have∑k
i=1 pif(xi) = pkf(xk) + (1− pk)

∑k−1
i=1 p

′

if(xi)

≥ pkf(xk) + (1− pk)f
(∑k−1

i=1 p
′

ixi

)
≥ f

(
pkxk + (1− pk)

∑k−1
i=1 p

′

ixi

)
= f

(∑k
i=1 pixi

)
where we used convexity on line 3 and the induction hypothesis on line 2. The

second part is left as an exercise. �

Jensens inequality allows us to establish that relative entropy is non-negative
which is a fundamental result in information theory.



5

Theorem 2. D(p||q) ≥ 0 for p and q probability functions for which relative entropy
is defined. Equality holds only when p = q.

Proof. We prove only the first part and the second is left as an exercise. Let the
values of x for which p(x) 6= 0 be A and the values for which q(x) 6= 0 be B with
A ⊂ B for relative entropy to be defined. We have firstly easily that

D(p||q) = E

(
− log

(
q

p

))
Now minus the logarithm is a convex function and also we can regard q

p as a
random variable with real valued outcomes. Thus we can use Jensens inequality to
deduce that

D(p||q) ≥ − log

(∑
x∈A

p(x)
q(x)

p(x)

)
= − log

(∑
x∈A

q(x)

)
≥ − log

(∑
x∈B

q(x)

)
= 0

where we also used the fact that the logarithm is an increasing function together
with the regularity assumption that A ⊂ B in the last inequality. �

This theorem has a number of interesting consequences. Firstly since the mutual
information can be expressed as a relative entropy it is also non-negative. Secondly
equation (3.3) then has the consequence

H(X) ≥ H(X|Y )

which means fixing a random variable never increases on average uncertainty of
another random variable. This result can be combined with the chain rule (2.4) to
give

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi)

with equality only when all the random variables are independent.
In the same kind of way that we defined a conditional entropy we can also define

a conditional relative entropy. We consider only the two random variables (X
and Y ) case but the generalization is obvious. If we fix the value of Y then both
q(X,Y ) and p(X,Y ) will become q(X|Y = y0) and p(X|Y = y0) respectively and
the relative entropy D(p(X|Y = y0)||q(X|Y = y0)). If this is averaged over all
possible values of Y then we obtain the conditional relative entropy:
(3.4)

D(p(x|y)||q(x|y)) ≡
∑
y∈A

p(y)
∑
x∈A

p(x|y) log
(
p(x|y)
q(x|y)

)
=
∑

x,y∈A
p(x, y) log

(
p(x|y)
q(x|y)

)
Using this definition and straightforward manipulation we can obtain an impor-

tant chain rule for relative entropy:

Theorem 3. D(p(x, y)||q(x, y)) = D(p(y)||q(y)) +D(p(x|y)||q(x|y))

Proof. Exercise. �

This result and the previous Theorem will be used later to establish a generalized
second law of thermodynamics.
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3.3. Fine Graining. If we consider a certain set of n outcomes for two random
variables and then we subdivide each of these categories into mi further categories
what happens to the entropy and relative entropy? Shannon’s second axiom shows
that the entropy increases since the amount of choice increases. It turns out that
relative entropy does as well. To prove this we first establish

Theorem 4. (Log sum inequality) If {ai} and {bi} are n positive sets of values
then

(3.5)
n∑

i=1

ai log

(
ai
bi

)
≥

(
n∑

i=1

ai

)
log

(∑n
i=1 ai∑n
i=1 bi

)
with equality only when the two sequences are constant multiples of each other.

Proof. We prove the first part and leave the second as an exercise. Consider f(t) =
t log t. For t > 0 this is clearly convex by the second derivative test and so by
Jensens inequality ∑

pif(ti) ≥ f
(∑

piti

)
where the pi are a probability set and the ti are positive. Setting pi = bi∑n

j=1 bj

and ti = ai

bi
and using the definition of f it follows∑

i

ai∑
j bj

log

(
ai
bi

)
≥

(∑
i

ai∑
j bj

)
log

(∑
i

ai∑
j bj

)
and multiplication through by

∑
j bj gives the desired result. �

If we now recall the form of relative entropy we see that subdividing a particular
outcome category into mi new subcategories is the equivalent of replacing the right
hand side of equation (3.5) with n = mi by the mi terms of the left hand side. The
effect on the relative entropy is therefore non-decreasing and usually an increase.
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