
Information Theory, Predictability and
Disequilibrium.

Lecture 11: An information theoretic approach
to statistical disequilibrium

1 Introduction
In the last two lectures we have seen that the relative entropy between a
prediction density and an equilibrium density is a natural measure of the
predictability of a statistical system. Furthermore in Lecture 5 we have
seen that in a continuous Markov random process governed by the Fokker
Planck equation (FPE), the relative entropy between an arbitrary density
and the equilibrium density declines monotonically and can therefore be
used as a measure of the disequilibrium of such systems. This close rela-
tionship between disequilibrium, relative entropy and predictability suggests
that non-equilibrium statistical physics is a subject worthy of very close at-
tention. Unfortunately it is also a subject which is far from being in a final
state as a complete physical theory. Many different approaches have been
attempted with varying degrees of elegance and success. This situation is
in stark contrast to the power, elegance and completeness of equilibrium
statistical mechanics. A unifying principle in the latter area derives from in-
formation theory due to the maximum entropy principle identified by Jaynes.
This suggests that a similar phisiophical approach may be productive for the
non-equilibrium case. In this lecture we present a recent such effort by the
instructor and co-workers.

2 Liouville equation and Gibbs densities
As we saw in Lecture 5, in a deterministic dynamical system obeying the
autonomous equations

∂xi
∂t

= Ai(x) (1)
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the probability density evolves according to the PDE

∂tp = −∂i [Ai(x)p]

where the summation convention is assumed. If the system also satisfies
the so-called Liouville property

∂iAi = 0

then this becomes
∂tp = −Ai∂i [p]

Important examples of such systems include those referred to as Hamiltonian.
Molecular dynamics is often assumed to be Hamiltonian. In this lecture we
confine ourselves to this case for pedagogical reasons although the formalism
to be described may be generalized to an autonomous dynamical system. It
is convenient in such systems to introduce a so-called Poisson bracket

{C,B} ≡ ∂iCJij∂jB

where the matrix J is antisymmetric which implies that the bracket is as
well. The dynamical system is assumed to be given by

∂xi
∂t

= {xi, H}

where H(x) is called the Hamiltonian and characterises the dynamical
system. Any quantity within such a system which has a vanishing Poisson
bracket with H is easily shown to be time invariant. Energy is an example
in molecular dynamics. It is also easily verified that such a system satisfies
the Liouville property and furthermore that the density evolves according to

∂p

∂t
+ Lp = 0 (2)

Lg ≡ {g,H}

Now in the case that the density p is steady i.e. the system is in statistical
equilibrium then we deduce immediately that this peq is an invariant of the
dynamical system. Numerical and experimental experience shows that it has
the form

peq = C exp(−βiIi)
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where Ii are low order algebraic invariants for the system. In molecular
dynamics energy is one of the Ii and the corresponding βi is called the inverse
temperature. A density of this form is called a Gibbs density. The form
above may also be derived by constraining the average of the Ii to fixed
values and seeking the maximum entropy density as in Lecture 6. This
principle due to Jaynes is a reasonable one for a system in equilibrium since
one would expect the means of invariants to remain fixed when a statistical
system is in equilibrium. As we saw in Lecture 5 the fixed mean values of
these invariants are related to the inverse temperatures βi by the so-called
Legendre transformation.

3 Non-equilibrium densities
One might be tempted given the discussion of the previous section to simply
integrate the Liouville equation from an arbitrary initial density. Indeed this
is precisely what often occurs with the FPE discussed earlier. Unfortunately
in many systems of practical interest (most fluids and molecular dynamical
systems) this is impractical since they involve a large number of degrees of
freedom which translates into a high dimensional PDE. This is commonly re-
ferred to as the curse of dimensionality. A popular approach to this difficulty
is coarse-graining or closure. Here we identify the slow degrees of freedom of
the system and attempt by various devices to treat the fast degrees of free-
dom as being in (statistical) equilibrium and forcing the slow modes in some
way. This is actually one of the initial motivations for the study of FPEs
with a diffusion term. Often the way in which the fast modes influence the
slow modes is derived in an unpleasantly ad hoc manner although rigorous
limiting approaches do exist.

The approach to be described here assumes a particular density family
for the slow modes and also assumes the remaining fast modes satisfy a
Gibbs density form as they are close to equilibrium. The slow mode density
family must be selected from experimental investigation. It also must be suf-
ficiently simple to allow analytical moment calculation. Fortunately in many
important practical instances a Gaussian form is (approximately) justifiable
which ensures tractable calculations. It is to be emphasized though that this
(and the fast mode Gibbs assumption) are always approximations. This is
in contrast to the equilibrium case where Gibbs densities can be shown to be
extremely accurate. Presumably as time scale seperation between fast and
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slow modes becomes large and densities closely approach Gaussian form then
these approximatins become asymptotically exact. Such a result has yet to
be rigorously established however.

The density families to be used are exactly those discussed in Lecture 6
and as we saw there may be regarded as differential manifolds with a Rieman-
nian metric tensor given by the Fisher information matrix and coordinates
given by the parameters of the family under consideration. In the case of a
Gaussian family the parameters are the means and covariances. Note also
that under certain circumstances, the equilibrium Gibbs densities may be
included within the manifold. This perspective on the slow variable densities
will play an important role below.

4 The Liouville equation constraint

4.1 Introduction

Consider a “path” through the slow manifold i.e. a time series of densities
constructed in the manner outlined above. There is clearly no guarantee that
it will satisfy the Liouville equation (2). Indeed some careful consideration
leads one to the general conclusion that the path will often not since the fast
modes are assumed to be equilibriated and this cannot be so in general for a
short enough time interval. Note however that the static point consisting of
the Gibbs density will satisfy the equation given the discussion in section 2.

Despite this lack of precise “Liouvillean evolution” one might hope that
a path could be found which in some sense minimizes the deviation from
such evolution. This is the approach we shall follow but how do we measure
deviation from Liouvillean evolution? Intuitively this measure is one between
a path density and a Liouvillean evolved density. As we have seen repeatedly
in this course the obvious candidate for such a “density distance” is provided
by the relative entropy.

4.2 Mathematical formulation

We refer to the approximating densities as trial densities and write them
as p̂. Consider various temporal evolutions over a short interval ∆t which is
however assumed sufficiently long that fast modes decorrelate. The evolution
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according to the Liouville equation (2) will be

p(t+ ∆t) ≡ e−∆tLp̂(t)

Now in general1 this evolved density will lie outside the manifold described
by trial densities. The evolved trial density must therefore be the different
density

p̂(t+ ∆t) = e∆tT p̂(t)

where the operator T = ∂
∂t

is anti-Hermitian like the Liouville operator
L. The information lost IL in assuming p̂(t + ∆t) when in fact the density
is p(t+ ∆t) is simply the relative entropy D(∗||∗) of the second density with
respect to the first. We have now the following

IL = D
(
e−∆tLp̂||e∆tT p̂

)
=

∫
e−∆tLp̂

(
e−∆tLl̂ − e∆tT l̂

)
=

〈
e∆tL

(
e−∆tL − e∆tT

)
l̂
〉
p̂

=
〈(
I − e∆tLe∆tT

)
l̂
〉
p̂

(3)

=
〈(
I − e∆t(T+L)

)
l̂
〉

(4)

with l̂ ≡ log p̂. On the second line we are using the fact that an arbitrary
function of p also obeys the Liouville equation (2); on the third line we are
using the anti-Hermitean property for L; and on the last line we are assuming
that [L, T ] = 0 and the expectation refers to the trial density at the start of
the propagation interval. Define now the following useful random variable R
which we call the Liouville residual

R(p) ≡ (T + L) log p (5)

Note that for a probability evolving according to the Liouville equation,
R vanishes but will not in general for a p̂ constrained to lie within the trial
density manifold. A general random variable F can be shown, using the

1If the trial distribution gives an invariant measure for the system this will not be the
case.
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anti-hermitian property of L and the definition of R, to satisfy the following
evolution equation (see Appendix A [2])

∂ 〈F 〉
∂t
− 〈LF 〉 = 〈TF + FR〉

from which we deduce (setting F = 1) firstly that

〈R〉 = 0 (6)

and secondly (setting F = R) that

〈(T + L)R〉 = −
〈
R2
〉

(7)

Returning now to equation (4) we expand the exponential operator as a
Taylor series. The terms in ∆t of order zero and one vanish due to cancel-
lation and equation (6) while the order two term remains and using (7) we
derive the remarkably simply second order approximation

IL =
(∆t)2

2

〈
R2
〉

+O((∆t)3)

Thus the information loss per timestep to lowest order is simply proportional
to the variance of the Liouville residual R. It is worth observing that this
loss is quadratic in the time interval ∆t which is consistent with the relative
entropy geometrically being a distance squared as discussed in Lecture 6. In
order to make further progress beyond this general equation we now specify
the trial density manifold T . We identify a subset of functions A (assumed a
vector) from the dynamical system which we label as the resolved (or coarse
grained) variables. In general these will be functions of the slow variables for
the dynamical system. Secondly we assume that equilibrium densities are of
a Gibbs type and for simplicity we assume that the only invariant involved
here is the energy. The general trial density is then deduced by minimizing
the relative entropy with respect to the Gibbs density under the assumption
that the resolved variable expectations are known. They therefore take the
form as discussed in the previous section

p̂(t) = exp
[
λ(t)tA−G(β, λ)− βE

]
(8)

where E is the energy of the system which we are assuming is one of the
resolved variables and satisfies LE = 0. Note also that G normalizes the
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distribution and the partition function Z = expG. In addition there is a
one to one relationship between the co-ordinates of the manifold λ and the
expectation values a of the chosen A. Either can serve as co-ordinates for
the trial distribution manifold and are related by a Legendre transform (see,
for example, [1]). With this specification it is easy to calculate R as

R = λ̇t(A− a) + λtLA

where the overdot denotes a time derivative and hence that

IL =
(∆t)2

2

(
λ̇tgλ̇− 2λ̇t 〈LA〉+ φ

)
+O((∆t)3) (9)

φ ≡ λi 〈LAiLAj〉λj
gij ≡ 〈(Ai − ai) (Aj − aj)〉

The matrix/tensor g here is the Fisher information matrix which as al-
ready noted is a Riemannian metric tensor for the manifold of trial densities.
We have also used the following identity derived in Appendix A of [2]:

〈LAi〉 = −λj 〈(Ai − ai)LAj〉

5 Optimal paths
Viewing equation (9) we see it has the form of a Lagrangian in classical
mechanics. Indeed if only the quadratic term in λ̇ is retained then this
Lagrangian is that appropriate for calculating geodesics on the trial density
manifold from the metric tensor. The other two terms may be seen in a
Lagrangian for electromagnetism with the vector 〈LA〉 playing the role of a
vector magnetic potential while φ plays the role of an electric scalar potential.
As is well known, interesting dynamical paths are obtained by integrating the
Lagrangian with time to produce an action:

S =
∆t

2

∑(
λ̇tgλ̇− 2λ̇t 〈LA〉+ φ

)
∆t ' ∆t

2

∫ t2

t1

(
λ̇tgλ̇− 2λ̇t 〈LA〉+ φ

)
dt

Fixing two endpoints for a path and minimizing this action produces a clas-
sical dynamical path. In the case that the potentials are ignored this is
precisely the geodesic for the manifold. This manifold is the general one
for the choice of trial density family and the metric tensor does not depend
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on the dynamics of the problem under consideration. The introduction of
the vector and scalar potentials which both involve the Liouville operator L
introduce the dynamics for slow variables.

It appears therefore that we have a variational framework analogous to
classical dynamics for non-equilibrium statistical systems. The treatment
of endpoints however is a little different to classical dynamics (see below).
Note further that all terms within the Lagrangian here are specified and
arise purely from the interaction between fast and slow modes within the
dynamical system. The only ad hoc aspect to our approach concerns the
selection of the trial manifold and the specification of slow variables.

How should the action S, which measures deviation from a Liouvillean
evolution, be used to determine the most consistent path? Such a path could
be called the thermodynamical trajectory. In a practical situation one could
ensure that the initial density belonged to the trial manifold. Thus the initial
value of λ(0) would be set and the endpoint values λ(t) then determined by
a variational principle. There are several choices as to which principle should
be used:

1. One could find the semi-infinite path λ̂(t) which minimizes

S∞ (λ(0)) ≡
∫ ∞

0

L (λ, λ̇)dt (10)

subject to the constraint that λ(0) is prescribed.

2. One could find the path minimizing

S [λ(t)] ≡
∫ t

0

L (λ, λ̇)dt

again with the same constraint. Denote the action of this extreme path
by s(λ) one could then seek the endpoint λ̂(t) which minimizes s(λ).

3. Rather than considering only the extreme path action in evaluating s(λ)
one could sum over all possible paths leading to the endpoint from the
fixed initial point and weight them with an appropriate factor such as

exp

(
−∆t

2
S [λ]

)
This then forms a path integral of a standard (Wiener) type which can
be evaluated by many techniques popular in mathematical physics. The
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generalized function s(λ) can then be minimized as before to obtain
λ̂(t).

Note that method 2 can be obtained from method 3 by allowing ∆t to be-
come arbitrarily large. All three methods have been used by the author
and co-worker Turkington (see [2], [4] and [3]). In general the second two
methods give better results when compared to direct numerical simulation
of a variety of turbulent systems. The first method gives a good account of
the asymptotic behaviour of a system as it approaches equilibrium while the
other methods also enable a better simulation of finite time (spin up) effects.
We briefly sketch the solution to method 1.

Associated with the Lagrangian is the Hamiltonian2 obtained in the usual
manner of Hamiltonian mechanics:

H (p, λ) = (p+M)t g−1 (p+M)− φ
p = gλ̇−M
M ≡ 〈LA〉

where p is the conjugate momentum to λ. A fundamental theorem of
Hamiltonian mechanics says that the action from equation (10) satisfies the
stationary Hamilton Jacobi equation

H (∇S∞, λ) = 0

The required thermodynamical path can now be obtained from the equa-
tion

dλ̂

dt
= g−1(∇S∞ +M)

λ̂(0) = λ(0)

Such thermodynamical relaxation equations are widely seen in the non-
equilibrium literature. Solutions to Method 2 above can be found using
similar Hamilton-Jacobi machinery.

2Note that this is the slow variable Hamiltonian not the Hamiltonian applicable to the
entire dynamical system.
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