
Information Theory and Predictability
Lecture 11: Information flow

1 Introduction
Within a general random dynamical system uncertainty can be thought of as
flowing from one location, dimension or subspace to another. A good example of
such a flow is provided by a stochastically forced system where the random forc-
ing is constantly injecting uncertainty. The analysis of this flow is of significant
interest in many practical applications. A particular application is provided by
prediction where uncertainty flows from location to another as the prediction
proceeds in time. It is clear if one was able to reduce uncertainty in one particu-
lar location then benefits would accrue in the locations to which the uncertainty
flowed. There are many other possible applications of this study some of which
are detailed in [1] and [9].

Information or uncertainty flow does not in general satisfy the usual intuitive
notions derived from fluid flow. Thus for example we shall see below that
uncertainty flow is not necessarily symmetric.

A more rigorous formulation of uncertainty flow is presently in the process
of detailed development and we shall outline in this Lecture several approaches
that have been proposed in the literature. Earlier work tended to be empirical
in the sense that flow functionals were proposed and then justified intuitively
by appeal to the well understood properties. Later work has focused on more
fundamental formulations.

2 Empirical approaches
There have been two functionals proposed in the physics and atmospheric science
literature (see [1], [9], [3] and[8]):

Suppose we have available1 the joint probability distribution function p(x(t), y(t0))
of a particular prediction (random) variable X(t) and another variable Y (t0) at
the initial condition time t0. Now if we had perfect knowledge of Y (t0) then the
(univariate) distribution for X(t) would change to reflect this improved knowl-
edge of our system. The resulting univariate distribution is the conditional
distribution2

p(x(t)|y(t)) ≡ p(x(t), y(t0))

p(y(t0))

1In a practical situation such a distribution will only be available to us as a sample estimate
at reasonably coarse resolution however for the present we shall ignore this technical difficulty.
Later we shall discuss the practical implementation of these ideas.

2We use lower-case to denote particular numerical choices for the random variables
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Consider now the conditional entropy introduced in Lecture 2

H(X(t)|Y (t0)) ≡ −
∫ ∫

dx′(t)dy′(t0)p(x
′(t), y′(t0)) ln (p(x

′(t)|y′(t0)))
= −

∫
dy′(t0)p(y

′(t0))
∫
dx′(t)p(x′(t)|y′(t0)) ln (p(x′(t)|y′(t0)))

The second line here shows that the conditional entropy is the expected en-
tropy of the (univariate) conditional distribution. Since this entropy reflects the
expected uncertainty in the distribution given perfect knowledge of Y (t0) it will
intuitively be less than H(X(t)) which measures the unconditioned uncertainty
of X(t). In fact we have seen already in Lecture 2 that the difference of these
two entropies is the so called mutual information I between x(t) and y(t0):

I(X(t);Y (t0)) = H(X(t))−H(X(t)|Y (t0)) (1)

Intuitively then (see [3]) such a mutual information represents the expected
reduction in uncertainty in x(t) associated with perfect knowledge of the initial
condition variable Y (t0).

We shall refer to I(X(t);Y (t0)) henceforth as the “time lagged mutual in-
formation” or TLMI. The TLMI does not measure the information flow into X
from other random variables: Consider a typical multivariate distribution for
the initial time t0. For spatial points that are close together there is often a
high correlation between random variablesX(t0) and Y (t0) and hence the TLMI
between Y (t0) and X(t) may measure simply the importance of persistence to
the particular random variable X(t). Schreiber (see [8]) has suggested another
functional which in his view, better reflects information flow: Suppose there
was on the contrary no information flowing into X from other random variables
such as Y . In such a case one could model the sequence of random variables
X(t) as a univariate process meaning that

p(x(t)|x(t0)) = p(x(t)|x(t0), y(t0)) ∀x(t), x(t0), y(t0) (2)

In other words knowledge of the other random variables Y at the initial
conditions makes no difference to the future of the random variable X if x(t0) is
known. Schreiber suggests using the deviation from this property as a measure
of the information flow from Y into X. We can use the relative entropy of the
two distributions as such a measure. For particular choices of the conditioning
variables x(t0) and y(to) this is

D(p(x(t)|x(t0), y(t0)), p(x(t)|x(t0))) ≡
∫

dx(t)p(x(t)|x(t0), y(t0)) ln
[
p(x(t)|x(t0), y(t0))

p(x(t)|x(t0))

]
The transfer entropy (which we abbreviate as TE) is then the expected

value of this deviation when all possible values of the conditioning variables are
considered i.e.

T (Y → X, t, t0) ≡
∫ ∫

dx(t0)dy(t0)p(x(t0), y(t0))D(p(x(t)|x(t0), y(t0)), p(x(t)|x(t0)))
=

∫ ∫
dx(t0)dy(t0)p(x(t), x(t0), y(t0)) ln

[
p(x(t)|x(t0),y(t0))

p(x(t)|x(t0))

]
(3)
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If we consider now the spatially close x(t0) and y(t0) it is clear then if they
are highly correlated then p(x(t)|x(t0)) will be close to p(x(t)|x(t0), y(t0)) since
the addition of y(t0) will not provide much further influence on x(t) beyond that
already provided by x(t0). We note that due to its definition in terms of the
relative entropy functionalD, transfer entropy is non-negative but also generally
non-symmetric since usually

T (Y → X, t, t0) 6= T (X → Y, t, t0)

which allows a direction to be associated with information interchange between
random variables.

One can also write the transfer entropy in a form analogous to equation (1):

T (Y → X, t, t0) = H(X(t)|X(t0))−H(X(t)|X(t0), Y (t0))

which shows that it has the interpretation of the expected reduction in un-
certainty in the target random variable X(t) due to knowledge of the initial time
variable Y (t0) beyond that which knowledge of the target variable at the initial
condition time would give.

In summary TLMI allows one to identify which initial condition variables
require better observation in order to reduce prediction error. TE excludes the
influence of persistence in such a calculation and might be thought of as better
reflecting the intuitive meaning of information flow. As we shall see TLMI
has the practical advantage over TE of requiring smaller ensemble sizes for its
calculation. This is a result of the bivariate nature of TLMI as opposed to the
trivariate nature of TE.

3 Application to atmospheric prediction
The functionals discussed in the previous section have been used in several
applications which are detailed in the citations given at the start of that section.
Here we consider a semi-realistic atmospheric ensemble prediction setup (it is the
same as that discussed in the last section of the previous lecture). The concrete
application we have in mind is to decide how exactly the initial conditions need
to be improved in order to reduce uncertainty in predictions at other locations
and with respect to other dynamical variables. Results shown are taken from
published work by the lecturer [2].

We focus on a particular target point where we wish to improve predictions
(i.e. reduce uncertainty). In particular we choose a target point in the middle
of the North Atlantic. In Figure 1 and Figure 2 we consider a surface target
point and consider how to reduce uncertainty in one day predictions of temper-
ature and zonal (east west) wind. Figure 1 show a plot of TLMI and TE for
temperature. These show that in order to improve temperature predictions at
one day the best strategy is to reduce uncertainty in the vicinity of the target
point. Uncertainty flow from other areas is not all that important relative to
the persistence of uncertainty at the target region (compare TLMI with TE).
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Figure 1: Uncertainty transfer to the target point (the solid square). The target
and source variables are temperature and TLMI and TE (see text) are shown
in nats. Note the reduced values for TE compared with TLMI.

4



Figure 2: As for Figure 1 but for zonal wind. The mean winds for the ensemble
at the initial conditions are shown as arrows. The TE exceeds the TLMI due to
a sampling error offset of approximately 0.1 nats in TE.
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Figure 3: Longitude vertical plot of TLMI along 40 degrees north. The target
here is in the upper troposphere (solid square) and is zonal wind like Figure 2.
The vertical units can be converted approximately to pressure in millibars by
multiplying by 1000.

The situation for zonal velocity is quite different as Figure 2 shows. Most of the
uncertainty here flows in from remote locations (note the similarity between TE
and TLMI). The important regions for the zonal wind target correspond very
closely with a large surface cyclone in the mean initial conditions. This sug-
gests that the dynamics underlying this regional cyclone need better definition
to reduce uncertainty in the zonal wind field in the more general North Atlantic
region.

By choosing various targets and dynamical variables we find that in general
most of the uncertainty flows horizontally in the atmosphere. Occasionally
however we do see some vertical propagation. Figure 3 shows just such a case.
Here our target is in the upper troposphere near the jet-stream and we are
considering again how to improve one day zonal wind forecasts. The jet-stream
is primarily zonal in nature so we are really asking how to reduce uncertainty
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in the prediction of the jet-stream at a particular location. The plot of TLMI
is a zonal section along 40 degrees north and shows quite a bit of uncertainty
coming up from the mid-troposphere.

It is hoped that analyses like those shown above will have a future positive
impact on deciding where to put additional elements of the observing platform
which is used to initialize weather predictions.

4 More fundamental approaches
The arguments given in Section 2 regarding the use of TLMI and TE as mea-
sures of uncertainty flow are essentially heuristic. We now consider more fun-
damental approaches. For clarity we limit out approach here (see [4]) to a two
dimensional system however the approach we outline has since been extended
to n dimensional systems (see [5] and [6]) and also two components of arbitrary
finite dimension (see [7]).

Recall from Lecture 5 that a general dynamical system satisfying

∂xi

∂t
= Ai(x, t) (4)

has an associated Fokker-Planck (or for this special case a Liouville) equation
given by

∂tp = −
N∑
i=1

∂i [Ai(x, t)p] (5)

In Lecture 5 we derived an entropy evolution equation for this system:

∂th =

∫
p

[
N∑
i=1

∂Ai

∂xi

]
d−→x ≡ E(∇ • −→A ) (6)

where E denotes expectation with respect to the probability density applying
at a particular time. This has a straightforward interpretation in terms of
the evolution of volume elements within the dynamical system: If one takes a
small region within the original state space and evolves points within this ball
according to (5) then the rate of change of the volume of the region will be
∇ • −→A thus the rate of change of entropy is the average rate of change of all
volume weighted by the relevant probability distribution.

Suppose we have a two dimensional system p(x1, x2) and consider the time
evolution of the marginal entropy with respect to the first component3. If the
first component were not interacting with the second then this marginal entropy
would evolve according to the appropriate one dimensional version of equation
(6) i.e.

∂th
∗
1 ≡ E(

∂A1

∂x1
)

3i.e. h1 ≡
∫

p(x1) log p(x1)dx1 where p(x1) =
∫

p(x1, x2)dx2
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where the star superscript is indicating this as a hypothetical isolated evo-
lution of entropy. The true evolution of h1 can be derived in a straightforward
way from equation (5):

∂th1 = −
∫ ∫

p(x1, x2)

p(x1)
A1

∂p(x1)

∂x1
dx1dx2

the difference between these two expressions (i.e. ∂t(h1 − h∗1)) then has the
natural interpretation as the flow of entropy from component 2 into component
1. The reverse flow can obviously be derived in a similar fashion and can be
shown to not necessarily be of the opposite sign. The interested reader can find
more details on this measure as well as a comparison with Schreiber’s measure
of transfer entropy (TE) in Liang and Kleeman [4].
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