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ABSTRACT

Using the ideas of generalized linear stability theory, the authors examine the potential role that tropical
variability on synoptic–intraseasonal timescales can play in controlling variability on seasonal–interannual time-
scales. These ideas are investigated using an intermediate coupled ocean–atmosphere model of the El Niño–
Southern Oscillation (ENSO). The variability on synoptic–intraseasonal timescales is treated as stochastic noise
that acts as a forcing function for variability at ENSO timescales. The spatial structure is computed that the
stochastic noise forcing must have in order to enhance the variability of the system on seasonal–interannual
timescales. These structures are the so-called stochastic optimals of the coupled system, and they bear a good
resemblence to variability that is observed in the real atmosphere on synoptic and intraseasonal timescales.
When the coupled model is subjected to a stochastic noise forcing composed of the stochastic optimals, variability
on seasonal–interannual timescales develops that has spectral characteristics qualitatively similar to those seen
in nature. The stochastic noise forcing produces perturbations in the system that can grow rapidly. The response
of the system to the stochastic optimals is to induce perturbations that bear a strong resemblence to westerly
and easterly wind bursts frequently observed in the western tropical Pacific. In the model, these ‘‘wind bursts’’
can act as efficient precursors for ENSO episodes if conditions are favorable. The response of the system to
noise-induced perturbations depends on a number of factors that include 1) the phase of the seasonal cycle, 2)
the presence of nonlinearities in the system, 3) the past history of the stochastic noise forcing and its integrated
effect, and 4) the stability of the coupled ocean–atmosphere system. Based on their findings, they concur with
the view adopted by other investigators that ENSO may be explained, at least partially, as a stochastically forced
phenomena, the source of the noise in the Tropics being synoptic–intraseasonal variability, which includes the
Madden–Julian oscillation, and westerly/easterly wind bursts. These ideas fit well with the observed onset and
development of various ENSO episodes, including the 1997–98 El Niño event.

1. Introduction

Through coordinated observation and numerical
modeling efforts, the recent Tropical Ocean Global At-
mosphere (TOGA) experiment has revealed a great deal
about air–sea interaction in the Tropics, leading to an
increased understanding of the El Niño–Southern Os-
cillation phenomenon (ENSO) (National Research
Council 1996). While a number of competing theories
and mechanisms proposed for ENSO episodes exist (see
reviews by McCreary and Anderson 1991; Neelin et al.
1994; Battisti and Sarachik 1995), there is fairly strong
observational and modeling evidence (Mantua and Bat-
tisti 1994; Boulanger and Fu 1996) to support the idea

Corresponding author address: Dr. Andrew M. Moore, Program
in Atmospheric and Oceanic Sciences, CIRES, University of Colo-
rado, Campus Box 311, Boulder, CO 80309-0311.
E-mail: andy@australis.colorado.edu

that ENSO is, by and large, governed by a delayed-
action oscillator, an idea originally proposed by Mc-
Creary (1983), and later modified by Suarez and Schopf
(1988) and Battisti and Hirst (1989). However, obser-
vations reveal that no two ENSO episodes are com-
pletely alike, and, in fact, the episodes of the 1990s are
quite different from those of the 1970s and 1980s. This
perhaps suggests that no single mechanism is solely
responsible for ENSO, and that the relative importance
of different physical processes may vary from episode
to episode.

Despite its name, it is debatable whether ENSO is
really an oscillation, since individual events tend to be
episodic rather than part of a regular oscillatory cycle.
Fourier spectra of the NINO3 index (the sea surface
temperature anomaly averaged over the central and east-
ern tropical Pacific, 58N–58S, 908–1508W) and the
Southern Oscillation index (SOI) reveal a rather broad
spectral maximum centered around a period just shy of
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4 yr (Blanke et al. 1997; Kestin et al. 1998). In recent
times, the period between episodes has been quite ir-
regular, varying between 2–10 yr. Historical records also
reveal that there have been periods in the past when
there was little or no ENSO activity, such as the 1920s
and 1930s (Torrence and Webster 1998).

While the development of established ENSO episodes
is thought to be reasonably well understood, there is
still much debate about the cause of the irregularity in
the occurrence of episodes, and the observed decadal
variations in ENSO activity. One idea currently abroad
is that such irregularities and variability is due to a
modulation of the tropical Pacific Ocean circulation by
extratropical effects, both near-surface effects with time-
scales of a few years, and deep ocean effects on longer
timescales associated with changes in the thermohaline
circulation of the ocean (McCreary and Lu 1994; Liu
et al. 1994; Gu and Philander 1997; Gray and Sheaffer
1997). Another popular idea gaining momentum builds
on ideas proposed by Hasselmann (1976) and is that
high-frequency transients in the atmosphere and ocean
can act as an effective stochastic forcing for the coupled
system, causing ENSO episodes to occur aperiodically
(Lau 1985; Lau and Chan 1986, 1988; Schopf and Suar-
ez 1988; Battisti 1988; Vallis 1988; Zebiak 1989; Pen-
land and Matrasova 1994; Penland and Sardeshmukh
1995; Penland 1996; Wainer and Webster 1996; Klee-
man and Moore 1997; Blanke et al. 1997; Eckert and
Latif 1997). Other studies have sought to explain ENSO
as a chaotic phenomenon involving interactions between
ENSO and the seasonal cycle (Zebiak and Cane 1991;
Munnich et al. 1991; Jin et al. 1994, 1996; Chang et al.
1994, Tziperman et al. 1994, 1995, 1997).

In this paper we revisit the idea that ENSO episodes
are a stochastically forced phenomena, under the basic
premise that tropical variability on seasonal–interannual
timescales is distinct from variability on synoptic–in-
traseasonal timescales. This is a reasonable assumption
since spectra of the observed variability in the Tropics
do show a fairly pronounced spectral gap between these
two timescales (Lau and Chan 1988; Madden and Julian
1994). Variability on synoptic–intraseasonal timescales
is essentially unpredictable on seasonal–interannual
timescales. Therefore, we can essentially view the syn-
optic–intraseasonal variability as noise on top of the
seasonal–interannual variability. We are interested in the
potential impact that this noise may have on the low-
frequency variability associated with ENSO. Using what
is now commonly referred to as generalized linear sta-
bility theory, we have examined the spatial structure
that a noise forcing field that is stochastic in time must
have in order to act as an efficient means of inducing
variability on ENSO timescales in the tropical coupled
ocean–atmosphere system. This is done using an inter-
mediate coupled ocean–atmosphere model of the trop-
ical Pacific and global atmosphere. It is this aspect of
our research that sets it apart from previous studies that
have mainly concentrated on the temporal nature of the

noise forcing on ENSO. Our results strongly suggest an
intimate relationship between intraseasonal variability,
such as the Madden–Julian oscillation (MJO), westerly
wind burst activity, and ENSO, an idea that agrees with
observations of some ENSO episodes, including the
1997/98 event. Based on this result, we concur with
those authors cited above that ENSO behaves as a sto-
chastically forced phenomena that has important impli-
cations for ENSO prediction and predictability.

The paper is laid out as follows. In section 2 we briefly
present some ideas that stem from generalized linear
stability theory. The intermediate coupled model used
in this study is described in section 3. The response of
the coupled model to an imposed stochastic forcing is
examined in sections 4 and 5, and the dynamics of the
model response is explained in section 6. In section 7
we build on a paradigm of ENSO originally suggested
by Lau and Chan (1986, 1988) and we present a dis-
cussion of these ideas.

2. Linear theory of a stochastically forced system

We denote by C the state vector of the seasonal–
interannual component of the coupled ocean–atmo-
sphere system at any point in space and time, and as-
sume that the nonlinear development of C is governed
by

]C
5 L(C), (1)

]t

where L is a nonlinear operator. As described above,
the component of variability on synoptic–intraseasonal
timescales can be considered as a stochastic noise-forc-
ing vector f(t) acting on the system that induces per-
turbations c in the seasonal–interannual component of
the system. In sequel, we refer to f(t) as the ‘‘stochastic
forcing’’ that varies spatially and temporally, and c as
the ‘‘coupled system response.’’ During their early stag-
es of linear development, when c2 K c, the noise-
induced perturbations will be described to first order by

]c ]L
5 c 1 f(t). (2)1 2]t ]C

In general (]L/]C) is nonautonomous and represents a
continuous linearization of the system about a time-
evolving basic-state solution C(t) of (1).

For convenience we consider a discrete form of (2)
since typically (1) and (2) are solved numerically. Using
discrete forms of these equations also greatly simplifies
the ensuing algebraic equations making their interpre-
tation more transparent. An appropriate discrete form
of the stochastic differential Eq. (2) can be written as

cn 5 cn21 1 DtAn21cn21 1 (Dt)1/2fn, (3)

where Dt is the time step, and the subscript n refers to
the time level t 5 nDt. The matrix An [ (]L/]C)t5nDt,
and the noise is given by the vector fn [ f(nDt). In (3)
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we have used a simple time-stepping scheme to simplify
the algebraic expressions that follow, but without loss
of generality. We will assume that the stochastic forcing
is unbiased so that ^fk& 5 0 and ^fk, & 5 Dk,lC, whereTfl

^ . . . , . . . & denotes an ensemble average over many dif-
ferent realizations of the noise, C is the spatial covari-
ance matrix of the noise forcing, Dk,l is the temporal
decorrelation time of the noise, and the superscript T
denotes a matrix transpose. The factor (Dt)1/2 in the last
term of (3) is required to satisfy the variance properties
of noise described by a Wiener process (Kloeden and
Platen 1992; Penland 1996). Strictly speaking, the dis-
crete form of the stochastic differential Eq. (3) is valid
only for white noise forcing. However, if the decorre-
lation time of the noise is short compared to the time-
scales typically associated with A then (3) is still a good
approximation (Penland 1996). Kleeman and Moore
(1997) have estimated the decorrelation time of real
atmospheric noise to be ;3.5 days which is much less
than the seasonal–interannual timescales of A. Therefore
we expect (3) to be a good discrete approximation to
(2).

Of particular interest is the variance of the coupled
system response c due to the stochastic forcing ac-
cording to (2). We denote by the variance of c at2\c \n X

time t 5 nDt, given by 5 ^(cn 2 c)TX(cn 2 c)&,2\c \n X

where c 5 ^c&, and X defines an appropriate variance-
norm. Using (3) the variance can be written as

n21 n21

2 T\c \ 5 DtTr D R XR C (4)O On X l,k n,l k,n5 6k50 l50

(Kleeman and Moore 1997; Farrell and Ioannou
1996a,b), where R is the propagator of (2) in the absence
of the noise f and is defined by

n

c 5 (1 1 DtA ) c 5 R c . (5)Pn n2m11 k k,n k5 6m5k11

Therefore in the absence of noise forcing (fn 5 0), Rk,n

is the linear operator that advances solutions of (3) for-
ward in time over the time interval t 5 kDt → nDt.

It is instructive to rewrite (4) in the following form:

5 Tr{ZC},2\c \n X (6)

where
n21 n21

TZ 5 Dt D R XR . (7)O O l,k n,l k,n
k50 l50

If Z and C have the eigenvalue/eigenvector sets {si, Si}
and {pj, Pj}, respectively, where s1 and p1 are the largest
eigenvalues, then (6) can be written as

2 2\c \ 5 s p (S · P ) . (8)O On X i j i j
i j

The eigenvectors P j of C are the so-called empirical
orthogonal functions (EOFs) of the stochastic forcing
of the system, and the dominant EOFs represent the

spatial patterns that characterize the spatial variability
of the noise forcing. The eigenvectors Si of Z are called
the ‘‘stochastic optimals’’ (Kleeman and Moore 1997;
Farrell and Ioannou 1996a,b) and depend on the low-
frequency dynamics of the coupled system according to
the definition of Z in (7). The stochastic optimals with
the largest eigenvalues are the stochastic forcing field
patterns that account for the largest fraction of noise-
induced variability. We can think of the spatial structures
of the stochastic optimals as the patterns of forcing re-
quired to maximize the variability of the coupled system
response . Therefore (8) shows that is deter-2 2\c \ \c \n X n X

mined by the projection of the noise EOFs on the sto-
chastic optimals. The larger this projection, the greater

will be.2\c \n X

Shear flows and asymmetries in the coupled ocean–
atmosphere system render the propagator R non-normal
(i.e., RTR ± RRT) (Moore and Kleeman 1999), in which
case the eigenvectors of R and Z form nonorthogonal
sets. The stochastic forcing induces variability by2\c \n X

exciting of the eigenvectors of R (Farrell and Ioannou
1996a,b). Because these eigenvectors are nonorthogon-
al, they have a nonzero projection on one another so
superpositions of them are characterized by rapid tran-
sient growth, even if all of the eigenvectors of R are
stable (Farrell 1985). Therefore in systems where per-
turbations are described by non-normal dynamics,

can be amplified by stochastic noise forcing. For2\c \n X

systems that are unstable in the sense that at least one
of the eigenvectors of R grows in time, the spatial struc-
ture of the noise EOFs is less important since any sto-
chastic forcing that perturbs the system will excite the
unstable eigenvectors and give rise to variability .2\c \n X

However, for systems that are stable, or close to a bi-
furcation point, the influence of stochastic noise on the
low-frequency variability can be extremely important to
the behavior of the system as we will demonstrate.

3. Application of linear stability theory to a
coupled model

We have applied the ideas of section 2 to the inter-
mediate coupled model of Kleeman (1993) to under-
stand the relationship between intraseasonal variability
and interannual variability in the tropical Pacific. This
model is currently used operationally for seasonal pre-
diction at the Australian Bureau of Meteorology, and
exhibits a relatively high level of predictive skill (Klee-
man 1994; Kleeman et al. 1995). It is an anomaly model,
and computes anomalous atmospheric and oceanic cir-
culations relative to the mean seasonal cycle of the sys-
tem that is specified using the observed climatology.
Only a brief description of the coupled model is given
here, and a detailed account of the model can be found
in Kleeman (1993).
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a. The atmospheric model

The atmospheric component of the coupled model is
a global, linear, Gill-type model described by

e U 2 byV 5 2Fa x

e V 1 byU 5 2Fa y

2e F 1 c (U 1 V ) 5 2RQ/2, (9)a a x y

where (U, V) are the anomalous zonal and meridional
components of the wind field, F is the geopotential
height anomaly, ca 5 60 m s21 is the equatorial Kelvin
wave speed, and ea 5 (3 day)21 is the coefficient of
Rayleigh friction and Newtonian cooling (Kleeman
1989, 1991). The horizontal resolution is 2.88. The mid-
tropospheric heating anomaly Q includes the effects of
latent heating due to evaporation and anomalous deep
penetrative convection, and is given by

L r cy 4 EQ 5 {|U|[q (T 1 T )]diffc r Ip 2 1

1 |U|[q (T 1 T ) 2 q (T )]}diff diff

L Iy 21 [(q 1 q)= · U 1 q= · U
c r Ip 2 1

1 (U 1 U) · =q 1 U · =q ] 1 e T.a

(10)

This expression results from integrating the atmospheric
moisture equation vertically, where I1 and I2 are con-
stants of integration. In (10), Ly is the latent heat of
evaporation, cE is the latent heat exchange coefficient,
cp is the the specific heat capacity at constant pressure,
and r4/r2 is the ratio of the air density at 1000 mb to
that at 500 mb. An overbar denotes the observed mean
value, while all other quantities represent anomalies. In
(10), T and T are the mean and anomalous sea surface
temperature (SST), respectively; U is the wind velocity;
qdiff (T) is the air–sea specific humidity difference at
temperature T; q is the specific humidity; and q the
specific humidity at temperature T . All other symbols
have their usual meanings. The term in { . . . } is due
to evaporation anomalies while the term in [ . . . ] rep-
resents the effects of anomalous moisture convergence.
Penetrative convection in the atmosphere occurs pre-
dominantly in areas where SST . 288C (Graham and
Barnett 1987). Circulation anomalies can cause SST to
fall below this critical value thus causing penetrative
convection to switch off, giving rise to heating anom-
alies Q 5 2Q , where Q is the mean latent heating rate
computed from observations. This effect is incorporated
in the atmospheric model by comparing the moist static
energy of air parcels m(T 1 T) with a critical value mc,
below which penetrative convection cannot occur. A full
discussion of the form of Q and the condition for pen-
etrative convection is given in Kleeman (1991). The
observed seasonal cycle of the coupled ocean–atmo-

sphere system is prescribed in the model through T , U ,
and q in the heating function Q of (10).

The direct thermal forcing term, eaT, in (10) relaxes
the 750-mb geopotential height anomaly to the surface
temperature anomaly, a formulation that has been wide-
ly used in the literature to mimic the effects of surface
processes associated with radiation, sensible heat fluxes,
and shallow convection that are not explicitly modelled
(e.g., Gill 1985; Davey and Gill 1987). Kleeman (1991)
has shown that the effect of this term is very similar to
the inclusion of a directly thermally forced boundary
layer with realistic stratification.

The performance of the atmospheric model has been
the subject of rigorous examination by Kleeman (1991)
and Kleeman et al. (1992), and, in general, the model
gives a good depiction of the wind anomalies associated
with ENSO SST anomalies.

b. The ocean model

The ocean component of the coupled model is limited
to the tropical Pacific (308S–308N, 1158E and 808W), with
a grid spacing ;½8, and the circulation is described by

u 2 byy 1 g9h 5 t /r H 2 e ut x x w o o

byu 1 g9h 5 t /r H (11)y y w o

and

2g9h 1 c (u 1 y ) 5 2e g9ht o x y o

T 2 hh 5 2eT 1 kT , (12)t xx

where the equatorial long wave approximation has been
made. In (11), (u, y) are the anomalous zonal and me-
ridional surface currents, h is the thermocline depth
anomaly, co 5 2.3 m s21 is the equatorial ocean Kelvin
wave speed, and eo 5 (2.5 yr)21 is the oceanic Rayleigh
friction and Newtonian cooling coefficient. The equa-
torial SST anomaly T depends only on the thermocline
depth anomaly h,1 and the parameter h is the constant
of proportionality (or regression coefficient) that relates
SST anomalies to thermocline depth anomalies h. Dif-
ferent values are used for h in the west and east Pacific
to reflect the fact that the main thermocline is deeper
in the west than the east. As a result, a given latent
heating anomaly is associated with larger SST anoma-
lies in the east than in the west. In the east Pacific from
the coast of Central America to 1408W, h 5 hE 5 3.4
3 1028 8C m21 s21, while in the west Pacific, h 5 hW

5 hE/5. In the central Pacific between 1408W and the

1 While changes in the rate of vertical and horizontal advection are
also known to influence SST (Picaut et al. 1996), Kleeman (1993)
has demonstrated that including only the influence of thermocline
displacements on SST produces the most skillful coupled model fore-
casts. This is partly because the thermocline depth variations are
described better by the model than are the ocean currents.
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date line, h varies linearly between hE and hW. Steady-
state solutions of (12) yield T 5 28C when h 5 15 m.
The h can also vary seasonally in accordance with the
seasonal cycle in mean upwelling. In (12), |h| # hmax

where hmax is a cutoff value of h that crudely mimics
nonlinearities in the real ocean and prevents a runaway
instability developing in the coupled system.

Dissipation is present in the model in the form of a
negative feedback term (Battisti and Hirst 1989; Neelin
1990), and a weak eddy diffusivity. A fixed Gaussian
structure function is used in the meridional direction to
compute off equatorial SST anomalies. The e-folding
length scale of the meridional structure function is 108,
which is close to the atmospheric equatorial radius of
deformation. Such a simplification was also made by
Neelin (1991) and reflects the assumption that effects
such meridional advection and the differing meridional
structure of the horizontal modes are unimportant to the
primary ENSO mechanism.

The surface wind anomalies computed by the atmo-
spheric model are converted to surface wind stress
anomalies t using the following linear stress law (t x, t y)
5 racDa(U, V), where ra is the density of air ; cD 5 1.8
3 1023 is a drag coefficient; and a 5 6.5 m s21 is a
representative value of the mean wind speed, which also
acts as a coupling coefficient.

The coupled model described here has a number of
features in common with the intermediate model of Ze-
biak and Cane (1987), although the treatment and details
of the atmospheric heating differ considerably in the
two models.

c. The stochastic noise forcing

By virtue of its intrinsic dynamics the coupled model
only describes variability on seasonal–interannual time-
scales, and in sequel we describe the coupled model
symbolically by (1). The ‘‘slaved’’ nature of the at-
mospheric component of the coupled model and the
inadequate representation of some of the physical pro-
cesses that are important for generating synoptic fea-
tures inhibits the development of variability with time-
scales shorter than ;1 month, so the coupled model
cannot generate a realistic level of internal stochastic
noise. Lau and Shen (1988) and Hirst and Lau (1990)
discuss this aspect of such models. We will examine the
coupled model response to a stochastic noise forcing
field, f(t), that we impose. The advantage of this ap-
proach is that we are at liberty to choose different forms
for f(t), and conduct a thorough investigation using a
well-understood and computationally inexpensive cou-
pled model.

The response of the coupled system to stochastic forc-
ing can be conveniently analyzed by examining the
structure of the stochastic optimals of the coupled mod-
el. Recall that the stochastic optimals are the eigenvec-
tors of the operator Z defined by (7), which depends on
the linear propagator R. The propagator for the coupled

model was obtained by constructing the first-order lin-
earization of the nonlinear coupled model about the ob-
served seasonal cycle. The transpose propagator RT in
(7) was computed using the adjoint of the linearized
coupled model. Details of the linearized and adjoint
coupled models can be found in Moore and Kleeman
(1996).

In the following, X in (7) was chosen so that the
(NINO3 index)2 is the measure of the variability of the
coupled system response defined by (4) where a2\c \n X

time interval of (n 2 1)Dt 5 6 months was used. The
stochastic optimal structures are insensitive to the time
interval for (n 2 1)Dt $ 6 months. Detailed analyses
(not shown) reveal that the structure of the stochastic
optimals is also insensitive to the choice of X for time
intervals $6 months. We will discuss the reason for this
in section 6a. Based on the findings of Kleeman and
Moore (1997), a decorrelation time of 3.5 days was
assumed for Dl,k, in (4) that agrees with estimates of
the real atmospheric noise. However, the results we pre-
sent are insensitive to this choice of Dl,k, and a white
noise forcing works equally well.

Figure 1a shows the surface heat flux associated with
the first stochastic optimal S1 of the coupled model, the
eigenvector of Z with the largest eigenvalue.2 The dom-
inant feature of the stochastic optimal heat flux is the
dipole centered on the western tropical Pacific. The wind
stress component of the stochastic optimal S1 is shown
in Fig. 1b and takes the form of bands of predominantly
zonal winds. Based on the discussion of (8), Fig. 1
represents the preferred pattern of stochastic forcing that
the coupled model would like to ‘‘feel’’ in order to
increase its variability , so if the spatial structure2\c \n X

of the EOFs of the noise forcing resemble S1 of Fig. 1,
then according to (8) the stochastic forcing will increase

. The physical factors responsible for the structure2\c \n X

of the stochastic optimal are complex and have been
examined by Moore and Kleeman (1999).

The structure of the stochastic optimal in Fig. 1 ob-
viously depends on the intrinsic dynamics of the coupled
model. However, given the high level of predictive skill
exhibited by the coupled model (Kleeman 1993) we
believe that the model describes dynamics that are im-
portant for ENSO variability. Analyses by Kleeman and
Moore (1997) show that the wind pattern in Fig. 1b
accounts for a large fraction of the real atmospheric
noise as estimated from European Centre for Medium-
Range Weather Forecasts (ECMWF) wind data. A sim-
ilar analysis was not possible for the surface heat flux
because of the lack of a long and reliable observational
dataset. However, the surface heat flux component of
the stochastic optimal resembles observed heat flux

2 We show only the first stochastic optimal because analyses have
shown that this pattern alone accounts for a large fraction of the real
atmospheric noise estimated from ECMWF wind data (Kleeman and
Moore 1997a).
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FIG. 1. The first member S1 of the stochastic optimal spectrum of the coupled model assuming a decorrelation time of 3.5 days for the
stochastic noise: (a) the surface heat flux, (b) the surface wind stress. In (a) shaded and unshaded regions are of opposite sign. The contour
interval and arrow scaling is arbitrary.

anomalies associated with intraseasonal variability (see
the observations of Lau and Chan 1985, 1988; Jones
and Weare 1996; Hendon and Glick 1997). Therefore,
it is possible that intraseasonal variability, such as the
MJO, can act as a source of noise forcing for variability
on ENSO timescales, an idea originally proposed by
Lau and Chan (1986, 1988). We will now explore this
idea further.

4. Stochastically forced solutions of the
coupled model

To examine the potential influence of stochastic forc-
ing on the variability of the coupled system, we ran the
nonlinear coupled model subject to stochastic noise
forcing. Analyses of ECMWF wind products (Kleeman
and Moore 1997) indicate that S1 and S2 are present in
the real atmospheric wind field noise with significant
amplitudes, approximately in the ratio 10:1, respective-
ly. The signatures of other members of the stochastic
optimal spectrum have insignificant amplitudes. A noise
field was constructed so that f(t) 5 a1(t)S1 1 a2(t)S2

and ( )1/2 5 10( )1/2 where an overbar denotes a time2 2a a1 2

average. The amplitudes a1 and a2 were generated using
an autoregressive model with a decorrelation time of
3.5 days and forced by white noise from a random num-
ber generator. At each point the noise forcing has a zero
time mean, that is, a1 5 a2 5 0. Averaged over the
tropical Pacific, the standard deviation sT of the noise
forcing on SST is 1.2 3 1022 K day21, which for a 50-
m-deep ocean surface mixed layer corresponds to sur-
face heat flux noise with standard deviation sH 5 27
W m22. Most of this variance occurs west of 1558W
where sT 5 1.4 3 1022 K day21 (equivalent to sH 5
33 W m22 for a 50-m ocean mixed layer). These am-
plitudes are consistent with direct surface flux mea-
surements made during (TOGA the Coupled Ocean–
Atmosphere Response Experiment COARE; Hendon

and Glick 1997). East of 1558W, sT 5 8 3 1023 K day21

(sH 5 18 W m22). The standard deviation sW of the
surface wind speed over the entire tropical Pacific is 0.3
m s21 (sW 5 0.16 m s21 west of 1558W, and sW 5 0.24
m s21 east of 1558W). The wind-noise amplitude is
somewhat lower than observed during TOGA COARE,
but as shown in section 6a, the noise forcing quickly
initiates rapidly growing coupled ocean–atmosphere
perturbations that strongly resemble observed instra-
seasonal variability. Therefore, part of what might be
considered as an observed component of the wind stress
noise actually develops in the model through air–sea
interactions. This suggests that the observed instrasea-
sonal variability may be governed by coupled air–sea
interactions. Evidence from simple models (Lau and
Shen 1988; Hirst and Lau 1990), coupled general cir-
culation models (Rosati and Stern 1998, personal com-
munication), and observations (Krishnamurti et al.
1988; Sperber et al. 1997) strongly supports this idea.
The sensitivity of the coupled model to stochastic forc-
ing amplitude is examined in section 6e.

The stability of the coupled model depends on various
parameters as described in section 5. Parameters given
in section 3a and 3b render the coupled model stable
to perturbations in the sense that it does not support
self-sustaining oscillations.3 Therefore in the absence of
any forcing, all anomaly fields are damped and quickly
tend to zero, and there is no variability in the2\c \n X

3 We use this definition of stability rather loosely. In the strictest
sense, in a truly linearly unstable system perturbations would grow
without bound. In the coupled model, the amplitude of the self-sus-
taining oscillations is growth limited by the nonlinearities described
in section 3. Battisti and Hirst (1989) report a similar dependence of
oscillation amplitude on nonlinearities in the model of Zebiak and
Cane (1987).
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FIG. 2. A time series of the NINO3 index from a 100-yr integration
of the coupled model forced with stochastic noise composed of S1

and S2. The bullets indicate 1 Dec of each year.

FIG. 3. A comparison of the power spectrum of the NINO3 index
from the stochastically forced coupled model and observation. The
spectra were computed using a maximum entropy method of order 30.

system, so the NINO3 and SOI indices would be zero
at all times.

Figure 2 shows a 100-yr time series of the NINO3
index from the nonlinear coupled model forced with the
stochastic noise field described above. Despite the rel-
atively low amplitude of the noise forcing, Fig. 2 shows
that sizable SST anomalies develop in the NINO3 re-
gion, and that noise-induced, aperiodic, variability in
the coupled model on seasonal–interannual timescales
is remarkably realistic. The ‘‘bullets’’ in Fig. 2 indicate
1 December of each year, and there is a tendency for
the peak of large amplitude warm and cold episodes to
be phase-locked with the seasonal cycle. We discuss this
aspect of the model behavior further in section 6. The
power spectrum of the model NINO3 index is shown
in Fig. 3 where it is compared to the spectrum of the
observed NINO3 index. The spectra in Fig. 3 were com-
puted using a maximum entropy method of order 30
(Press et al. 1996) to aid comparison of our results with
the recent related works of Blanke et al. (1997) and
Eckert and Latif (1997). The observed NINO3 time se-
ries is from the period 1875 to 1996, and is described
in detail by Torrence and Webster (1998). Figure 3
shows that the shape of the model NINO3 index spec-
trum agrees fairly well with that of the observations.
However the power in the frequency band .(2 yr)21 is
higher than observed, a feature that can be partly cor-
rected by reducing the stochastic forcing amplitude (see
section 6e).

Figure 2 clearly shows that there are decadal varia-
tions in the noise-induced ENSO variability of the cou-
pled model. We ran the stochastically forced integration
of Fig. 2 for an additional 900 yr to obtain statistically
significant signals over a wide range of frequencies, and
Fig. 4a shows a wavelet power spectrum of the model
NINO3 index as a function of period using a Morlet
wavelet (Meyers et al. 1993). Recall that the stochastic
noise forcing has a decorrelation time of 3.5 days. Figure
3 however shows that the coupled model response is
‘‘red.’’ The statistical significance of the wavelet spectra
were therefore computed by comparison with a mean
background red-noise spectrum. If a peak in the wavelet
power spectrum is significantly above this background
then a confidence level is assigned to the peak using a

chi-squared test as described by Torrence and Compo
(1998). Most of the variability occurs in the 3–8-yr pe-
riod band, and is associated with model ENSO episodes.
Variability in the 3–8-yr band is episodic being pro-
nounced during some time intervals and absent during
others as illustrated in Fig. 4b that shows an expanded
view of the wavelet time series between years 100 and
200. To demonstrate that this kind of variability is not
a manifestation of the noise forcing spectrum, Fig. 4c
shows a wavelet analysis of the 1000-yr noise forcing
amplitude time series that was used where the same red-
noise model is used to test for statistical significance.
If we denote the wavelet power spectrum of the model
NINO3 index as ST(v, t) where v is frequency and t is
time, and the corresponding wavelet spectrum of the
noise forcing amplitudes as SN(v, t), then a measure of
the degree of correspondence between Figs. 4a and 4c
is the correlation

[S (v, t) 2 S (v)][S (v, t) 2 S (v)]T T N Nr(v) 5 ,
2 2 1/2{[S (v, t) 2 S (v)] [S (v, t) 2 S (v)] }T T N N

(13)

where an overbar indicates an average over time, and
ST(v) and SN(v) are the time-mean values of ST and
SN, respectively. Values of r(v) are also shown in Fig.
4c for each frequency band. Clearly there is no signif-
icant correlation at any frequency between the NINO3
index spectrum of Fig. 4a and the noise spectrum of
Fig. 4c.

The decadal variations of ENSO activity in Fig. 4b
are very reminiscent of the kinds of observed decadal
variations in the NINO3 index. Figure 4d from Torrence
and Compo (1998) shows a wavelet analysis of the ob-
served NINO3 index from 1875 to the present. Changes
in ENSO activity and changes in the frequency band of
maximum power are reminiscent of the kinds of changes
occurring in the stochastically forced model. Therefore,
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FIG. 4. (a) A wavelet power spectrum of the NINO3 index time series from a 1000-yr integration
of the coupled model forced with stochastic noise. (b) As in (a) but showing the details of the
wavelet spectrum between years 100 and 200. (c) A wavelet power spectrum of the 1000-yr sto-
chastic forcing time series. Also shown is the correlation r(v) defined in the main text for each
periodic time indicated on the left of the wavelet spectrum. Note the difference in the scale between
(a) and (c). (d) A wavelet power spectrum of the observed NINO3 index from Torrence and Compo
(1998). The shaded contours are normalized variances of 1, 2, 5, and 10. Cross-hatching regions
indicate the ‘‘cone of influence’’ where edge effects due to the finite length of the time series
become important. In each panel the bold contour represents the 95% confidence level for a red-
noise process.

it is reasonable to believe that stochastic forcing of the
coupled system due to variations in atmospheric and
oceanic transient activity may be a possible cause of the
changes on decadal timescales that are seen in the ob-
servations, an idea discussed further in section 7.

To demonstrate the importance of the spatial structure

of the noise forcing for inducing low-frequency vari-
ability in the coupled model, Fig. 5 shows a 100-yr time
series of NINO3 index when the noise forcing is white
in space with a 3.5-day decorrelation time, and has the
same amplitude as before. In this case the coupled sys-
tem response has a very low amplitude.
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FIG. 4. (Continued)

FIG. 5. A time series of the NINO3 index from a 100-yr integration of the coupled model
forced with stochastic noise that is white in space with a 3.5 day decorrelation time.

5. Variations in the stability of the coupled system

The stability of the coupled model affects the char-
acter of the ENSO oscillations that it can support, and
depends upon a number of important parameters related
to the large-scale circulations of both the ocean and
atmosphere. Damped or self-sustaining oscillations are

solutions of the model depending on the parameters cho-
sen, and the coupled system response to stochastic forc-
ing is sensitive to the character of the ENSO oscillations
the system can support.

Three important parameters (described in section 3) that
strongly influence the behavior of the coupled model are
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FIG. 6. Time series of the NINO3 index from 100-yr integrations
of the coupled model forced with stochastic noise as a function of
a, c0, and g. The noise forcing is composed of S1 and S2. The letters
S and U indicate that system is stable or unstable, respectively, while
the letter B indicates that the system is stable but close to its primary
bifurcation point.

1) the ocean–atmosphere coupling strength, a.;
2) the phase speed, c0, of the equatorial ocean Kelvin

wave; and
3) the sensitivity, g, of the SST anomalies to vertical

movements in the main ocean thermocline. This is
incorporated in (12) by replacing hh by ghh. As
defined, g is a dimensionless number, where g 5 1
corresponds to the default sensitivity used in Fig. 2,
and g 5 a represents the case where SST is a times
more sensitive to thermocline movements than the
default case.

The stochastically forced coupled model run de-
scribed in section 4 was repeated using all possible com-
binations of a, c0, and g for a 5 4.0, 6.5, 9.0 m s21,
c0 5 1.6, 2.3, 3.0 m s21, and g 5 0.5, 1.0, 1.5. These
modest parameter ranges certainly lie within the realms
of the real coupled system. The central values a 5 6.5
m s21, c0 5 2.3 m s21, g 5 1.0 are identical to the case
shown in Fig. 2, and a normal mode analysis of the
system reveals that the model is stable and very close
to its bifurcation point (see Moore and Kleeman 1997b).

Figure 6 shows 100-yr time series of NINO3 index
for the stochastically forced nonlinear coupled model
for each of the 27 different combinations of the param-
eters a, c0, and g. Clearly the stochastically forced cou-
pled system response varies considerably from case to
case. In Fig. 6, the parameter combinations for which
the coupled model will not support self-sustaining os-
cillations are denoted by ‘‘S’’ for stable, those which
do support self-sustaining oscillations are denoted ‘‘U’’
for unstable, and those cases that are stable but close
to the primary bifurcation point of the model are denoted
‘‘B.’’ Stable systems far from the primary bifurcation
point (such as g 5 0.5 for all a and c0) produce low
amplitude, essentially stochastic responses in the
NINO3 region in response to the noise forcing. As an-
ticipated, unstable systems (such as a 5 9 m s21, g 5
1, for all c0) produce regular, self-sustaining oscillations.
The unstable cases become more irregular as the am-
plitude of the stochastic forcing is increased substan-
tially (see section 6e). Most interesting are the stable
cases close to the primary bifurcation point where the
coupled model produces realistic timeseries of vari-
ability as discussed in section 4.

The real ocean–atmosphere counterparts of a, c0, and
g depend on many environmental factors controlled by
the atmospheric and oceanic circulations. Slow changes
in the large-scale components of these circulations on
climatic timescales will also influence a, c0, and g, so
it is reasonable to suppose that decadal to centennial
timescale variations in climate will influence the stablity
of the coupled system. Therefore, if stochastic forcing
is important for initiating ENSO episodes, the character
of the ENSO variability we observe will depend on
where the real coupled system resides with respect to
its primary bifurcation point. As the real coupled system
slowly ‘‘wanders’’ through parameter space we might
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FIG. 7. (a) The SST structure of a typical optimal perturbation of the coupled
model. Light and dark shading indicates SST anomalies of opposite sign. (b)
The surface wind stress associated with a typical optimal perturbation over
the tropical Pacific. (c) A satellite image from May 1986 showing the cloud
formations associated with intense westerly wind burst activity and a pair of
tropical cyclones (courtesy of the Taiwan Weather Bureau).

therefore expect to see changes in the character of ENSO
variability. This is an alternative and complementary
explanation to that discussed in section 4 for observed
decadal variations in ENSO activity.

6. The dynamics of noise-induced
interannual variability

a. Optimal perturbations

1) OPTIMAL PERTURBATION STRUCTURES

Under the influence of stochastic noise forcing, the
ENSO variability that develops in the model is main-
tained by stochastically induced perturbations that re-
semble ‘‘optimal perturbations.’’ The optimal pertur-
bations are the eigenvectors w of the generalized eigen-
equation RTXRw 5 lXw with eigenvalues l (Farrell
1985) and represent the fastest growing perturbations
that can exist in the coupled system before nonlinearity
becomes important. For the stochastic optimal in Fig.
1, X defines the (NINO3-Index),2 so optimal perturba-
tions for this norm produce the fastest growth of
(NINO3-Index).2 These perturbations compose a super-
position of the eigenvectors of R (i.e., the traditional

normal modes or finite-time modes of the system).
While each individual eigenvector of R decays in time
for the standard parameter choice in Fig. 2, the super-
position of eigenvectors that make up the optimal per-
turbation undergoes rapid transient growth. Figure 7a
shows the SST structure of a typical optimal pertur-
bation that bears a strong resemblence to the stochastic
optimal surface heat flux of Fig. 1, and resembles some
phases of observed SST anomalies associated with the
MJO (compare Fig. 7 with Fig. 8 of Hendon and Glick
1997). Therefore, when the coupled system is subjected
to stochastic noise forcing that projects on the stochastic
optimals, perturbations with initial structures that are
similar to the optimal perturbations are excited and sub-
sequently grow rapidly. These perturbations act as ef-
ficient precursors for ENSO episodes (Moore and Klee-
man 1996), so stochastically induced perturbations can
spawn ENSO episodes, thereby increasing the low-fre-
quency variability of the system as required by the linear
theory of section 2. These ideas are also supported by
the analyses of Penland and Sardeshmukh (1995) and
Penland (1996) who computed the optimal perturbations
of observed SSTs in the tropical Pacific and Indian
Oceans and find that SST anomalies prior to ENSO
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FIG. 8. Two-year time series of NINO3 index from the coupled
model subjected to the 2/1 phase of S1 with constant amplitude for
the first 14 days and zero forcing amplitude thereafter. Each curve
corresponds to an integration of the model started on the first of each
month.

episodes project heavily on the fastest growing optimal
perturbation.

The wind stress pattern of a typical optimal pertur-
bation is shown in Fig. 7b that bears a remarkable re-
semblence to westerly wind bursts frequently observed
in the western tropical Pacific, often in connection with
the MJO. Figure 7c shows a satellite image of the cloud
formations associated with strong westerly wind bursts
and an accompanying tropical cyclone pair that occured
during May 1986. The similarity between the optimal
perturbation of Fig. 7b and the observations of Fig. 7c
is striking. Moore and Kleeman (1997b) have shown
that all of the observed characteristics of westerly (and
easterly) wind bursts in relation to their duration, lon-
gitudinal extent, associated cyclone activity, etc., can
be captured by the optimal perturbations of the coupled
model. In the model, variations in the phase of the sea-
sonal cycle, as well as the relative importance of dif-
ferent thermodynamic processes in the upper ocean that
control SST, account for the changes in the character-
istics of the optimal perturbation wind bursts.

Recall that the stochastic optimals depend on the var-
iance-norm defined by X. Experiment shows that the
basic structure of the stochastic optimals is insensitive
to the choice of X in (7) for time intervals (n 2 1)Dt
$ 6 months. This is because the kernel in (7) becomes
dominated by RT as (n 2 1)Dt increases. For time in-
tervals $6 months the eigenvectors of RT emerge as the
adjoint coupled model is integrated backward in time
and their structure dominates the eigenvectors of Z. The
gravest eigenvector of RT is the optimal excitation for
the gravest eigenvector of R (Farrell 1989), where the
latter describes ENSO in this model (Moore and Klee-
man 1999). Similarly the structure of the optimal per-
turbations is relatively insensitive to the choice of X
(Moore and Kleeman 1997b) and they have structures

similar to the gravest eigenvector of RT. Hence the sto-
chastic optimal generates perturbations that stongly re-
semble the optimal excitations for the model ENSO.

To demonstrate the role played by optimal pertur-
bations in enhancing the variability of the coupled sys-
tem response, the coupled model was run for 2 yr subject
to constant amplitude forcing composed of S1 (cf Fig.
1) during the first 14 days of integration after which
time the forcing amplitude was zero. This type of forc-
ing is very reminiscent of an isolated MJO episode. The
standard deviation of the noise forcing averaged over
the tropical Pacific was sH 5 40 W m22 and sW 5 0.5
m s21. The model parameters used are the same as those
in Fig. 2. The model was run in this way 12 times
starting from the first day of each calender month. In
each case the stochastic optimal forcing had a negative
heat flux anomaly over the far west Pacific, and a pos-
itive anomaly over the central and eastern Pacific. For
simplicity, this configuration of the stochastic optimal
will be referred to symbollically as ‘‘2/1.’’ The op-
posite phase of the stochastic optimal which is the neg-
ative of that shown in Fig. 1 will be referred to as
‘‘1/2.’’

Figure 8 shows the 2-yr time series of the NINO3
index from model runs started each month. In each case
a warm episode initially develops with a SST anomaly
;18C in the central Pacific in response to the forcing.
(Recall that the model is stable in the sense that the
NINO3 index is zero at all times in the absence of any
forcing.) The amplitude of the SST anomaly is largest
for cases forced between September and March when
each episode peaks around October–November. This
suggests that the episode peak is phase locked with the
seasonal cycle similar to observed events (Rasmusson
and Carpenter 1982). The dynamical reasons for this
phase-locking, also apparent in Fig. 2, will be discussed
shortly. When the experiments of Fig. 8 were repeated
using the 1/2 pattern of the stochastic optimal, the
model initially developed a cold episode in all cases,
phase-locked to the seasonal cycle as in Fig. 8.

2) HEAT FLUX VERSUS WIND STRESS

Since the dynamics of the noise-induced perturbations
in Fig. 8 are approximately linear during the first few
months, we can explore the relative roles played by the
surface heat flux and wind stress components of the S1

forcing during this period. To do this, the coupled model
was started on 1 January, and forced for 14 days as in
Fig. 8, but with the S1 heat flux and wind stress com-
ponents used separately. After 14 days, the noise forcing
was zero. The structure of the thermocline depth, h, and
SST fields, T, that result from the surface heat flux forc-
ing alone are shown in Fig. 9 during months 2–4, and
are very similar to those of the optimal perturbations of
the coupled model examined by Moore and Kleeman
(1996). Figure 10 from Moore and Kleeman (1996)
shows the evolution of the thermocline perturbation for
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FIG. 9. Contour maps of thermocline depth, h, and SST, T, for months 2–4 from the coupled model when subjected to the 2/1 phase of
the surface heat flux component of S1 with constant amplitude for 14 days starting on 1 Jan. Shaded and unshaded regions are of opposite
sign. In (a)–(c) the contour interval is 0.75 m, and in (d)–(f ) the contour interval is 0.058C.

a typical optimal perturbation, which like Figs. 9a–c,
takes the form of an eastward propagating Kelvin wave.
The dipole structure in the SST of Figs. 9d–f is similar
to that shown in Fig. 7a and produces a wind field re-
sponse (not shown) like that shown in Fig. 7b.

The structures of h and T that result from the wind
component of S1 alone are shown in Fig. 11. These
perturbations also take the form of a Kelvin wave in

the h field, driven mainly by the zonally banded wind
structure of S1 over the central and eastern Pacific (cf
Fig. 1b). Because both the surface heating and wind
stress components of S1 tend to generate perturbations
with structures similar to the optimal perturbations, it
is not necessary for both components of the noise forc-
ing to be present at the same time. To illustrate, Fig. 12
shows the NINO3 index from the coupled model when
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FIG. 10. Contour maps of thermocline depth perturbation, dh, for a typical optimal perturbation of the coupled model. The contour inter-
val is 1.5 m.

forced with (a) the surface heat flux component alone,
and (b) the wind stress component alone, of the sto-
chastic optimals. The amplitude of the forcing in this
case is sH 5 54 W m22 and sW 5 0.6 m s21, which is
twice that used in the experiment of Fig. 2. The two
components of the noise forcing produce almost iden-
tical time series of the NINO3 index, which are also
very similar to that of Fig. 2. To understand this, recall
that the stochastic optimal of Fig. 1 resembles the grav-
est eigenvector of RT, which is the optimal excitation
for the model ENSO. The stochastic optimal therefore
generates perturbations that project heavily onto the
model ENSO, thereby increasing . The model2\c \n X

ENSO is an oscillation with an atmospheric and oceanic
component, so S1 must produce atmospheric and oceanic
perturbations that produce the same phase of ENSO (i.e.,
the two components add constructively). The heat flux
(wind stress) component of the stochastic optimal ex-
cites the atmospheric (oceanic) component of ENSO.
Hence, each component of S1 applied separately with
the same temporal structure produces a NINO3 time
series in which the ENSO episodes have the same am-
plitude and phase. Therefore the stochastically induced
variability produced by the two components of S1 is the
same, while nonlinear effects account for some of the
differences in Fig. 12. The dynamical, reasons for the
difference in structure between the stochastic optimal
S1 and the model ENSO are discussed in detail by Moore
and Kleeman (1999).

Further experiments (not shown) reveal that it is the
surface heat flux component of S1 in the west Pacific
that has the largest impact on the variability of the sys-
tem, while it is the S1 wind stress over the eastern Pacific
that has most impact on the variability. This can be
understood by examining the structure of the gravest
eigenvector of RT, which bears a strong resembence to
the stochastic optimal, and is the optimal excitation for
the model ENSO. Detailed analyses by Moore and Klee-
man (1999) have revealed that the west and east Pacific
are the centers of action for SST and the ocean circu-
lation, respectively, for this eigenvector. As noted earler,
the stochastic optimal heat flux in the west resembles
heating anomalies associated with the MJO and intra-

seasonal variability. A comparison of Fig. 1b with EOF
analyses of Hendon and Glick (1997, see their Fig. 8)
reveals that the banded structure of the S1 wind stress
in the eastern Pacific is consistent with changes in the
tropical trade winds that occur when a MJO event passes
through the system. Some of the stochastic optimal
structure in the east may also be representative of syn-
optic variability in this region, and variability in the
intertropical convergence zone.

3) PHASE-LOCKING TO THE SEASONAL CYCLE

The phase-locking of the stochastically induced
ENSO episodes in Figs. 2 and 8 can be understood in
terms of optimal perturbation dynamics. Moore and
Kleeman (1996) have shown that the seasonal cycle of
SST (which recall is specified from observations in the
model) is a major factor controlling seasonal variations
in optimal perturbation growth rates. During the period
January–April, the warm pool moves eastward raising
the SST in the central Pacific, and creating conditions
there that are favorable for rapid perturbation growth
through perturbations in deep penetrative convection.
Moore and Kleeman (1996, 1997b) show that mean
moisture convergence by the perturbation wind is the
most important term in the energy budget of the optimal
perturbations, a mechanism also identified by Lau and
Shen (1988) and Hirst and Lau (1990) as important for
the development of coupled ocean–atmosphere modes
on intraseasonal timescales. The wind–evaporation
feedback suggested by Emmanuel (1987) and Neelin et
al. (1987) as a mechansim for rapid perturbation growth
in the tropical atmosphere does not play a major role
in the model used here. The optimal perturbations of
Fig. 7 grow toward the east (Moore and Kleeman 1997a)
since their SST is influenced only by thermocline per-
turbations. Therefore, if a perturbation can grow toward
the east and achieve a large amplitude before the warm
pool begins to move westward again, then it can have
a significant effect on the seasonal–interannual vari-
ability. Perturbations that develop late or early in the
year have up to 6 months to achieve a large amplitude
in this way, and as shown by Moore and Kleeman
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FIG. 11. Same as Fig. 9 but for the case where the coupled model is subjected to only the wind stress component of S1.

(1996), this can be achieved in that time frame. Per-
turbations that develop in the late boreal spring and
summer, however, have to compete against the westward
advance and shrinking of the warm pool creating con-
ditions that are less favorable for perturbation growth.
A similar seasonal dependence of optimal perturbation
growth rates in the model of Zebiak and Cane (1987)
has also been found (Blumenthal 1991; Xue et al. 1994,
1997; Chen et al. 1997).

The mechanism discussed here for seasonal modu-
lation of perturbation growth is distinct from that pro-
posed by Philander et al. (1984) who argued that sea-
sonal variations in the position of atmospheric heating
by the mean wind convergence of the intertropical con-
vergence zone (ITCZ) lead to phase-locking of ENSO
with the seasonal cycle. The mechanism discussed by
Moore and Kleeman (1996) is more similar to that pro-
posed by Hirst (1986) who argued that phase-locking
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FIG. 12. Time series of the NINO3 index from 100-yr integrations of the coupled model forced
with stochastic noise composed of S1 and S2. Solid curve shows the case where only the surface
heat flux components of S1 and S2 are used, and the dashed curve shows the case where only
the surface wind stress components are used.

FIG. 13. Time series of the NINO3 index from 2-yr integrations
subjected to S1 forcing fields for the four cases indicated.

of ENSO was due to seasonal migrations of latent heat-
ing over water with SST . 268C that mirror movements
of the ITCZ. However, latent heat release due to deep
convection does not occur unless SST $ 288C (Graham
and Barnett 1987), a condition imposed in the coupled
model used here via a moist static energy threshold.
Since the 288C isotherm in the warm pool lies farther
to the west than the 268C isotherm, the growth of per-
turbations in the Kleeman model is decoupled from
movements of the ITCZ, so the mechanism for phase-
locking of ENSO discussed above is distinct from that
of Hirst (1986) also.

b. The response to combined forcing events

Section 6a indicates that fairly low-amplitude, short-
lived convective anomalies and wind anomalies, similar
in many respects to those observed in connection with
intraseasonal and synoptic variability in the Tropics, can

have a significant influence on the ENSO variability of
the coupled system. In the model, we can understand
the stochastically forced variability in terms of the dy-
namics of optimal perturbations that have structures
very reminiscent of westerly and easterly wind bursts
that often occur in association with MJO events (Dunk-
erton and Crum 1995; Milliff et al. 1998). A westerly
wind burst can be spawned in the model by subjecting
it to a 2/1 constant amplitude S1 forcing for 14 days
after which a warm episode develops as shown in sec-
tion 6a and Fig. 13. In nature, westerly and easterly
wind bursts are common over the western tropical Pa-
cific (Madden and Julian 1994), yet ENSO episodes
occur much less frequently. It is therefore of interest to
examine how wind bursts closely spaced in time with
the same or opposite sign influence low-frequency var-
iability. To do this we ran the coupled model starting
on 1 January with a 2/1 constant amplitude S1 forcing
applied during the first 14 days. Immediately following
this, a 1/2 constant amplitude S1 forcing was applied
for the next 14 days. After that, the forcing amplitude
was zero. The effects of the 2/1 forcing are almost
completely cancelled out by the 1/2 forcing, leading
to very small SST anomalies as shown in Fig. 13, which
shows a time series of the NINO3 index.

To illustrate the effect of ‘‘MJO-like’’ events that oc-
cur several weeks apart, we ran the coupled model with
2/1 constant amplitude S1 forcing during the first 14
days, zero forcing for the next 2.5 months, then with a
1/2 constant amplitude S1 forcing for 14 days, then
zero forcing for the remainder of the model run. A time
series of the resulting NINO3 index is shown in Fig.
13. The warm episode that initially develops in response
to 2/1 is arrested by the 1/2 forcing that is present
2.5 months later. Evidence for this kind of behavior is
apparent in the NINO3 time series in Fig. 2 and in the
observed time series. There have also been times in
nature when a warm or cold episode never eventuates,
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FIG. 14. The envelope defined by the stochastically forced hindcasts of NINO3 index that have
the highest and lowest correlations, Sk, with the NINO3 index of the unperturbed hindcast over
a 2-yr hindcast period. The timing of the major warm (W) and cold (C) events observed during
the period 1972–93 are also indicated.

despite the fact that all of the usual indicators point to
an episode occuring.

To illustrate the effect of two MJO-like events of the
same sign that occur several weeks apart, we ran the
coupled model as follows: 1) zero noise forcing during
January and February, 2) 2/1 constant amplitude S1

forcing from 1 March to 14 March, 3) zero forcing from
15 March to 31 March, 4) 2/1 constant amplitude S1

forcing between 1 April and 14 April, and 5) zero forc-
ing for the remainder of the model run. This scenario
is very much like that in the tropical Pacific during 1997
when two strong MJO episodes of the same sign with
associated bursts of westerly winds occured during
March and April. The resulting NINO3 index from the
coupled model is shown in Fig. 13, and in this case a
large-amplitude warm episode develops.

The experiments of Fig. 13 also indicate that in the
model a predominance of westerly wind bursts over
easterly wind bursts will give rise to a warm episode,
while a predominance of easterly wind bursts over west-
erlies will give rise to a cold episode.

c. The importance of nonlinearity

Our experiments illustrate how stochastic noise forc-
ing in the Tropics can disrupt variability on seasonal–
interannual timescales in the coupled system, as well as
enhance it. The ability of the stochastic forcing to dis-
rupt the system is strongly dependent on the nonli-
nearities of the coupled model. There are two important
nonlinearities in the model associated with 1) an at-
mospheric moist static energy threshold below which
deep penetrative convection anomalies cannot occur,
and 2) the depth of the ocean thermocline that does not
influence SST anomalies if it is very deep or very shal-
low. In sequel we will refer to 1 as ‘‘active’’ if the moist
static energy threshold is exceeded, and 2 as active if
the thermocline is very deep or very shallow. As shown
by Moore and Kleeman (1996), these nonlinearities can

severely inhibit the growth of perturbations in the mod-
el. Similar results have been reported by Battisti and
Hirst (1989), Chen et al. (1997), and Xue et al. (1997)
for the Zebiak and Cane model. The nonlinearity de-
scribed by 1 is generally active at all times over the
west Pacific warm pool, while in the central and eastern
Pacific 1 and 2 are typically active only during the de-
velopment of large-amplitude warm and cold episodes.
Therefore, once such an episode is well developed, it
is difficult for the noise forcing to disrupt the circulation
because noise-induced perturbations cannot grow. To
illustrate this, the coupled model was used to hindcast
the observed NINO3 index for the period January 1972–
December 1993. Two-year hindcasts were started on the
first day of each month by spinning up the ocean model
for 2 yr with observed wind stress anomalies just prior
to coupling with the atmosphere then running the cou-
pled model for 2 yr. As shown by Kleeman et al. (1995),
the coupled model demonstrates reasonable skill in pre-
dicting trends in the observed NINO3 index during this
period. Each of the model hindcasts was repeated 20
times by applying a different realization of the stochastic
noise forcing described in section 3. The correlation,
Sk, between the NINO3 index of the unperturbed hind-
cast and each perturbed hindcast was computed over the
2-yr period. Figure 14 shows the envelope defined by
the perturbed hindcasts that have the highest and lowest
correlations with the unperturbed hindcasts. The width
of the envelope at any time is an indication of how
effective the noise forcing is at perturbing the coupled
system during the following 2-yr period. In general, the
envelope is narrow when a large-amplitude warm or
cold event is present in the system. It is at these times
that the nonlinearities 1 and 2 are most active (see Moore
and Kleeman 1996). Note also that some of the model
hindcasts incorrectly predict strong ‘‘false’’ ENSO ep-
isodes (e.g., 1989–90), at which time the nonlinearities
1 and 2 are also active and the envelope is narrow.
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FIG. 15. A time series of the NINO3 index from a 100-yr integration
of the coupled model forced with stochastic noise composed of S1

and S2. The forcing is applied only during the period Nov–Apr of
each year. At all other times of the year, the noise forcing amplitude
is zero.

FIG. 16. Power spectra of the NINO3 index from 100-yr integra-
tions of the stochastically forced coupled model. The forcing am-
plitude is multiplied by the factor F in each case, and the standard
case, F 5 1, corresponds to that discussed in section 4. The cases
shown in (a) are from a stable model, while those in (b) are from an
unstable model. Also shown is the spectrum of the observed NINO3
index. The spectra were computed using a maximum entropy method
of order 30.

d. Seasonal variations in the noise forcing

Observation shows that MJO is most active during
the period November–April. It is of interest, therefore,
to see how the stochastically forced coupled system re-
sponse is influenced by seasonal variations in the sto-
chastic forcing. Figure 15 shows a time series of the
NINO3 index from a 100-yr integration of the coupled
model forced by stochastic noise as in section 4, but
only during the period November–April each year. At
all other times of the year, the stochastic forcing am-
plitude is zero. It would appear that realistic seasonal
variations in the level of noise do not alter the ability
of the noise to enhance the low-fequency variability of
the coupled model. This result can be anticipated from
Fig. 8, which shows that the noise is most effective at
increasing the coupled system response during the late
and early parts of the year.

e. Effects of variations in noise forcing amplitude

The effect of variations in the amplitude of the sto-
chastic forcing on the coupled system response has also
been examined. We consider first the case where the
model is stable but close to its primary bifurcation point
(a 5 6.5 m s21, c0 5 2.3 m s21, and g 5 1.0). The
experiment of section 4 was repeated with the amplitude
of the stochastic forcing changed by a factor of F 5
0.5, F 5 3, and F 5 5. The case F 5 0.5 corresponds
to a noise forcing with sH 5 16.5 W m22 and sW 5
0.08 m s21 in the western tropical Pacific. The case F
5 3 corresponds to a noise forcing with sH 5 99 W
m22 and sW 5 0.48 m s21 in the western tropical Pacific.
The case F 5 5 corresponds to a noise forcing with sH

5 165 W m22 and sW 5 0.8 m s21 in western tropical
Pacific. Figure 16a shows spectra of the NINO3 index
from the case F 5 1 of section 4, and the cases F 5
0.5, F 5 3, and F 5 5 computed using the maximum
entropy method of order 30. Also shown for comparison
is the spectrum of the observed NINO3 index. The level
of power at the ENSO period agrees best with the ob-
servations when F 5 0.5. As the amplitude of the forc-

ing is increased the power at all frequencies increases,
and the spectra tend to become flatter at the low-fre-
quency end, and the agreement between the model and
observations deteriorates.

Observations indicate that typical MJO related wind
anomalies are ;1–3 m s21 in the western tropical Pacific
(Hendon and Glick 1997) so F 5 5 has a wind amplitude
approaching the strength of the MJO, yet this case does
not agree well with observed spectra. To understand this
consider the dynamics of the response of the coupled
model to the stochastic forcing described in sections 6a
and 6b. It was shown that the stochastic forcing induces
in the model perturbations that can undergo rapid
growth over periods ranging from a few weeks to a few
months and that develop into westerly and easterly wind
bursts. Such events are part of the observed intrasea-
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sonal variability in nature so one might be tempted to
include them as part of the stochastic noise forcing. In
the model however, westerly and easterly wind bursts
develop from stochastically induced perturbations that
grow due to air–sea interaction. Therefore, in the model
the noise forcing merely acts to initiate MJO-like events
(which cannot develop spontaneously due to the absence
of the necessary physics in the model) that develop and
amplify via air–sea interaction producing ‘‘wind burst’’
structures like those in Fig. 7. The mechanism for this
rapid transient growth is discussed by Moore and Klee-
man (1996), and is similar to the latent heat-moisture
convergence feedback considered by Lau and Shen
(1988) and Hirst and Lau (1990).

It is also instructive to consider the effects of an in-
crease in stochastic forcing amplitude in the case where
the coupled model is unstable. The parameter choice we
have considered in this case is a 5 9 m s21, c0 5 2.3
m s21, and g 5 1.0. As described above we ran the
unstable coupled model subject to stochastic noise with
amplitude increased by a factor of F 5 1, 3, and 5.
Figure 16b shows the resulting NIN03 index power
spectrum compared to the observed spectrum. When F
5 1, the noise is ineffective at disrupting the regular,
self-sustaining oscillation that is set up in the model (cf
Fig. 6), so the spectrum shows a pronounced peak at
the frequency of the oscillation. The noise becomes
more effective at disrupting the self-sustaining ENSO
oscillation as the noise amplitude increases, but the
spectrum becomes flatter. The resulting time series of
the NINO3 index (not shown) do not look very realistic
when compared to the observed time series, which is
confirmed by comparing the shape of model and ob-
served spectra in Fig. 16b. The dynamics by which the
noise forcing disrupts the self-sustaining oscillation in
the unstable model are the same as those described in
section 6a and involve disturbances that resemble op-
timal perturbations. However, as shown in section 6c,
the nonlinearties of the model limit the growth of noise-
induced perturbations. When the model is unstable, the
nonlinearties are active for part of the time during each
cycle of the self-sustaining oscillation (Moore and Klee-
man 1996), hence noise-induced perturbations are al-
ways growth limited, and are relatively ineffective at
disrupting the self-sustaining oscillation. Consequently
in the unstable case a larger-amplitude forcing is needed
to widen the spectral peak of the NINO3 index in Fig.
16 compared to the stable case.

7. Discussion and conclusions

In this paper we have examined the low-frequency
response of the coupled ocean–atmosphere system in
the tropical Pacific to stochastic forcing in the form of
transient activity in the atmosphere and ocean. This was
done using an intermediate coupled model of the system
and by applying the theoretical ideas of generalized lin-
ear stability theory. Using these ideas we have computed

the patterns of stochastic noise forcing that produce the
largest response in the variability of the coupled system
response. These patterns are the so-called stochastic op-
timals of the the system. The surface heat flux com-
ponent of the dominant stochastic optimal resembles the
latent heating anomalies often observed in association
with intraseasonal variability, such as the MJO. The
surface wind component of the dominant stochastic op-
timal takes the form of predominantly zonally orientated
wind bands reminiscent of MJO activity and synoptic
variability in the real atmosphere (Kleeman and Moore
1997a). Even though the coupled model is stable, when
subject to a stochastic noise forcing composed of the
dominant stochastic optimals, a very realistic time series
of SST anomalies results with a spectrum whose shape
compares favorably with the observed variability. A de-
tailed investigation reveals that the stochastic forcing
induces perturbations in the coupled system that are
favorably configured to grow rapidly. As they develop,
these perturbations take the form of westerly and east-
erly wind bursts in the atmosphere over the western
tropical Pacific, and are very effective at generating
ENSO epsiodes in the model. It is in this way that the
stochastic forcing enhances the variability of the system
on seasonal–interannual timescales.

Stochastic forcing in the Tropics enhances seasonal–
interannual variability in two ways: 1) by inducing the
occurrence of ENSO episodes, and 2) by disrupting de-
veloping or existing ENSO episodes. The ability of the
noise to achieve these effects depends on a number of
factors that include

1) The phase of the seasonal cycle. Perturbations that
develop late or early in the year have more of a
chance of developing into an ENSO episode by vir-
tue of the seasonal cycle in tropical Pacific SST.

2) The presence of nonlinearities in the system. If the
system resides in a nonlinear regime, then the growth
of perturbations in generally inhibited. Such regimes
include ENSO episodes themselves.

3) The past history of the noise forcing and its inte-
grated effects. If the phase of the noise forcing is
continually changing rapidly, then the effect of sto-
chastically induced perturbations of one sign can be
arrested by perturbations of the opposite sign that
occur soon after. However, if the phase of the sto-
chastic forcing remains constant for a while, or if
the amplitude of the noise-induced perturbations
varies considerably, then the net effect of the per-
turbations is a significant change in the seasonal–
interannual variabilty of the system. For example, a
series of westerly wind bursts closely spaced in time
will tend to excite and intensify an El Niño episode,
and there is observational evidence for this during
ENSO episodes of 1976/77, 1982/83 (Lau and Chan
1988; Luther et al. 1983), 1986/87 (Lau and Chan
1986; 1988), and 1997/98.

By virtue of these factors, the noise forcing can either
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spawn new ENSO episodes in the model, or arrest ex-
isting episodes before they reach maturity.

The possibility of a connection between variability
on intraseasonal timescales and interannual timescales
was first suggested by Lau and Chan (1986) and in-
vestigated further by Lau and Chan (1988), Lau and
Shen (1988), and Hirst and Lau (1990). A number of
other studies cited in section 1 have also explored the
paradigm that ENSO behaves as a stochastically forced
low-frequency oscillation. However, most of these stud-
ies have used highly idealized models of ENSO, or have
concentrated mainly on the temporal nature of the noise
forcing with little regard for the spatial structure of the
noise. It is the latter that we have concentrated on here.
Based on our work we concur with the investigators
cited earlier that ENSO behaves as a stochastically
forced phenomena. We have demonstrated that transient
wave activity in the atmosphere and ocean, such as in-
traseasonal variability in the western and eastern tropical
Pacific acts as the source of stochastic forcing, exciting
perturbations that are favorably configured to undergo
rapid transient growth in the form of westerly and east-
erly wind bursts. Our experiments with a coupled model
reveal that decadal variations in ENSO activity in the
model can occur quite naturally when viewed in this
framework, consistent with the ideas of Hasselmann
(1976). The model ENSO is described by a dominant
mode of variability of the system, the ‘‘ENSO mode,’’
so variability of the system on ENSO timescales de-
pends primarily on time variations in the amplitude of
this mode. The amplitude of the ENSO-mode depends
on the stochastic forcing, and will be described by a
‘‘random walk,’’ so that ENSO variability will be high
(low) when the ENSO-mode amplitude is large (small)
as shown by Kleeman and Moore (1999). In the cases
examined here, spectra of time series agree best with
observations when the ENSO mode of the coupled mod-
el is stable. This result is somewhat at odds with a recent
study by Blanke et al. (1997) who concluded that the
ENSO mode may be unstable. However, their conclu-
sions were based on the results of a coupled model and
noise forcing fields different to those used in this study.
More work with other models along the lines described
here is clearly necessary to develop a clearer under-
standing of these issues.

The ideas presented here have important ramifications
for ENSO prediction and predictability and suggest that
our ability to predict the onset of ENSO episodes may
be limited by our ability to predict the properties and
statistics of the stochastic noise forcing. These ideas are
currently under investigation using the ensemble pre-
diction techniques of Moore and Kleeman (1998) in
which stochastic forcing reminiscent of intraseasonal
variability is used to perturb ensemble members. An
operational prediction system based on the stochastic
nature of ENSO has also been developed by Penland
(1996).

The development of the 1997/98 El Niño provides

perhaps some direct evidence for the mechanisms dis-
cussed in this paper. Just prior to the warming that oc-
curred in the east Pacific, two sizable MJO events passed
through the tropical Pacific. Associated with these
events were periods of strong westerly wind bursts dur-
ing March and April that initiated equatorial ocean
Kelvin waves with clear signatures in the main ocean
thermocline. This chain of events is similar to one of
the scenarios described in relation to Fig. 13. Many of
the forecasts for ENSO made by various groups around
the world prior to the March 1997 wind burst event
predicted only a weak warm event. After the wind bursts
of March and April however, many of the same models
were predicting a much stronger warm event indicating
that important precursor signals for the El Niño were
not present in the observations used to initialize fore-
casts prior to March 1997.

While the ideas and mechanisms discussed here are
simple, we must not overlook the fact that they have
been developed using a simple coupled model, and that
there are other physical mechanisms not included in this
model that may have a very strong influence on tropical
interannual variability. Some of the more obvious fac-
tors that we have neglected are 1) changes in the sea-
sonal cycle, and the interaction of the ENSO cycle with
the seasonal cycle, 2) effects of interannual variability
on intraseasonal variability, 3) the interaction of ENSO
with the Indian and Asian monsoons, 4) extratropical
influences of the atmospheric and oceanic circulations
on the Tropics, 5) interdecadal and intercentennial
changes in the ocean thermohaline circulation. Each of
these factors are likely to influence the stability of the
coupled system in the Tropics and so affect the response
of the low-frequency components of the system to the
stochastic forcing. Slow variations in the stability of the
coupled system are analogous to a slow wandering of
the coupled system through parameter space, and as we
have demonstrated, this may be another factor contrib-
uting to decadal variations in ENSO activity. It would
therefore be of interest to repeat the calculations pre-
sented here in a hierarchy of coupled models of varying
complexity to test the generality of our conclusions.
Similarly, a range of other experiments that should cer-
tainly be explored also suggest themselves .

A serious limitation of the model used here is the
slaved nature of the atmospheric component to the ocean
SST. This precludes the development of intrinsic intra-
seasonal oscillations in the model, as well as the inter-
action between intraseasonal and interannual oscilla-
tions, which is likely to be important (Lau and Chan
1988; Hirst and Lau 1990). This study has been limited
to the cases where the stochastic noise forcing is in-
dependent of the seasonal–interannual variability of the
system. This is probably an oversimplication, and it is
likely that in nature the noise forcing is a function of
the state of the system. This amounts to replacing f (t)
by f (C, c, t) in (2) and (3), which is a more complex
system, but nonetheless raises some interesting ques-
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tions that deserve further investigation, and which will
be the subject of future study.
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