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ABSTRACT

A new intermediate coupled model (ICM) is presented and employed to make retrospective predictions
of tropical Pacific sea surface temperature (SST) anomalies. The ocean dynamics is an extension of the
McCreary baroclinic modal model to include varying stratification and certain nonlinear effects. A standard
configuration is chosen with 10 baroclinic modes plus two surface layers, which are governed by Ekman
dynamics and simulate the combined effects of the higher baroclinic modes from 11 to 30. A nonlinear
correction associated with vertical advection of zonal momentum is incorporated and applied (diagnosti-
cally) only within the two surface layers, forced by the linear part through nonlinear advection terms. As a
result of these improvements, the model realistically simulates the mean equatorial circulation and its
variability. The ocean thermodynamics include an SST anomaly model with an empirical parameterization
for the temperature of subsurface water entrained into the mixed layer (7.,), which is optimally calculated
in terms of sea surface height (SSH) anomalies using an empirical orthogonal function (EOF) analysis
technique from historical data. The ocean model is then coupled to a statistical atmospheric model that
estimates wind stress (7) anomalies based on a singular value decomposition (SVD) analysis between SST
anomalies observed and 7 anomalies simulated from ECHAM4.5 (24-member ensemble mean). The
coupled system exhibits realistic interannual variability associated with El Nifio, including a predominant
standing pattern of SST anomalies along the equator and coherent phase relationships among different
atmosphere—-ocean anomaly fields with a dominant 3-yr oscillation period.

Twelve-month hindcasts/forecasts are made during the period 1963-2002, starting each month. Only
observed SST anomalies are used to initialize the coupled predictions. As compared to other prediction
systems, this coupled model has relatively small systematic errors in the predicted SST anomalies, and its
SST prediction skill is apparently competitive with that of most advanced coupled systems incorporating
sophisticated ocean data assimilation. One striking feature is that the model skill surpasses that of persis-
tence at all lead times over the central equatorial Pacific. Prediction skill is strongly dependent on the
season, with the correlations attaining a minimum in spring and a maximum in fall. Cross-validation
experiments are performed to examine the sensitivity of the prediction skill to the data periods selected for
training the empirical 7, model. It is demonstrated that the artificial skill introduced by using a dependently
constructed 7, model is not significant. Independent forecasts are made for the period 1997-2002 when no
dependent data are included in constructing the two empirical models (7, and 7). The coupled model has
reasonable success in predicting transition to warm phase and to cold phase in the spring of 1997 and 1998,
respectively. Potential problems and further improvements are discussed with the new intermediate pre-
diction system.
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1. Introduction

In the past two decades, El Nifio studies have made
remarkable progress, reaching the stage where skillful
predictions can be made 6-12 months in advance. Sev-
eral forecast systems have been used routinely in real
time to do so. These include statistical models (e.g.,
Barnston and Ropelewski 1992) and physical coupled
models of varying degrees of complexity, ranging from
intermediate coupled models (ICMs; e.g., Cane et al.
1986; Zebiak and Cane 1987, hereafter ZC87; Kleeman
1993; Zhang et al. 2003), to hybrid coupled models (e.g.,
Barnett et al. 1993; Syu et al. 1995; Tang and Hsieh
2002), to coupled general circulation models (GCMs)
(e.g., Ji et al. 1996; Rosati et al. 1997; Kirtman et al.
2002).

Large systematic biases are still a problem in many
coupled models (e.g., Latif et al. 2001), and significant
intermodel differences exist in sea surface temperature
(SST) simulation and prediction (e.g., Barnett et al.
1993; Chen et al. 2000). The skill of SST prediction in
the equatorial Pacific is strongly model dependent and
widely divergent across various coupled prediction sys-
tems (e.g., Latif et al. 1998; Barnston et al. 1999). To
improve prediction skill, intensive efforts have been
made in model development, coupled initialization,
ocean data assimilation, and bias correction. In particu-
lar, through continued improvements (Chen et al. 1995,
2000; Kang and Kug 2000), ICMs remain competitive
with more complex models and offer great promise for
further advancing seasonal-to-interannual climate pre-
diction associated with El Nifo in the tropical Pacific.

However, traditional intermediate ocean models
(e.g., Busalacchi and O’Brien 1980; ZC87) include only
a few baroclinic modes (often one) and neglect nonlin-
earity in the momentum equations. As a result, the
simulation of SST variability in the central Pacific,
where zonal advection is an important term in the heat
budget (e.g., Ji et al. 1996), may be poor in these mod-
els. Increasing the number of baroclinic modes in these
models improves the vertical structure of equatorial
currents significantly (McCreary 1981). But, surface
currents become unrealistically strong, since nonlinear
terms are neglected. With this in mind, Keenlyside and
Kleeman (2002) developed a new intermediate ocean
model: the model is an extension of the McCreary
(1981) baroclinic model to include varying stratification
and partial nonlinearity effects. As a direct result of
these extensions the model is able to realistically simu-
late the mean upper-ocean equatorial circulation and
its variability (Keenlyside 2001; Keenlyside and Klee-
man 2002).
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Another problem area in ICMs is the parameteriza-
tion of T, anomalies for use in the calculation of SST
anomalies in terms of dynamical ocean quantities. Most
commonly a local parameterization is used; however
there is evidence that 7, variability has a nonlocal char-
acter (Zhang et al. 2005), and that this also contributes
to the deficiencies of these models in simulating SST
anomalies over the central basin (e.g., ZC87; Keenly-
side 2001). With this motivation, Zhang et al. (2005)
developed a nonlocal empirical parameterization of 7..
First, T, anomaly fields are estimated by inverting the
SST anomaly equation using observed SST and simu-
lated upper-ocean currents. This approach, thus, by giv-
ing a balanced treatment of various terms in the heat
budget of the mixed layer, provides an optimized esti-
mate of 7, anomalies for use in simulating SST anoma-
lies. Second, a relationship between the estimated 7,
and modeled sea surface height (SSH) interannual vari-
ability is constructed based on a regression of their his-
torical time series in a reduced space of empirical or-
thogonal functions (EOFs). Finally, given a SSH
anomaly, 7, can be parameterized and used for SST
anomaly calculations. With these improvements the
Keenlyside and Kleeman (2002) intermediate ocean
model simulates SST interannual variability in the
tropical Pacific very well (Zhang et al. 2005).

The improved ocean model is coupled to an empiri-
cal atmospheric model constructed from a singular
value decomposition (SVD) of the covariance between
SST and wind stress anomalies. The coupled system
exhibits quite realistic interannual variability associated
with El Nifo, which suggests realistic development of
coupled modes within the tropical Pacific atmosphere—
ocean system, which in principle should yield better El
Nifo predictions. In this paper, we explore the model’s
ability to predict tropical Pacific SST anomalies. Since
the ICM places very low demands on computing re-
sources, a large number of predictions have been made
for retrospective El Nifio forecasts. One particular fo-
cus will be on examining the sensitivity of prediction
skill to the 7, model constructed from historical data,
since this is one of the most significant distinguishing
features of this new coupled model.

The paper is organized as follows. Section 2 describes
briefly model components and various datasets used;
section 3 provides a description of the performance of
their uncoupled and coupled simulations. A simple ini-
tialization procedure is presented in section 4. Section 5
demonstrates the hindcast skill of the coupled system.
Section 6 presents verification experiments, and section
7 deals with an independent forecast experiment for the
period 1997-2002. The paper is concluded in section 8.
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2. Description of model components and datasets

In this section, we briefly describe various compo-
nents of the new ICM (Fig. 1). Readers can find more
information on the model’s dynamical component in
Keenlyside (2001) and Keenlyside and Kleeman (2002),
and on the model’s improved empirical 7, parameter-
ization scheme in Zhang et al. (2003, 2005).

a. The dynamical ocean model

The dynamical component of the intermediate com-
plexity ocean model, developed by Keenlyside and
Kleeman (2002), consists of a linear and a nonlinear
component. The linear dynamics of the model follow
the modal formulation of McCreary (1981), but are ex-
tended to have horizontally varying background strati-
fication. A standard configuration is chosen with 10
baroclinic modes plus two surface layers, which are
governed by Ekman dynamics and simulate the com-
bined effects of the higher baroclinic modes from 11 to
30. A nonlinear correction associated with vertical ad-
vection of zonal momentum is incorporated and ap-
plied diagnostically only within the two surface layers,
forced by the linear part through nonlinear advection
terms. The linear and nonlinear components produce
dynamical ocean variables, including horizontal cur-
rents over the surface mixed layer, vertical velocity at
the base of the mixed layer (entrainment velocity), and
ocean pressure fields.

The ocean model domain extends from 33.5°S to
33.5°N and from 124° to 30°E, covering the tropical
Pacific and Atlantic basins with a realistic representa-
tion of continents. (Only results from the Pacific basin
are presented in this paper.) The model has a 2° zonal
grid spacing and a meridional grid stretching from 0.5°
within 10° of the equator to 3° at the northern and
southern boundaries. Vertically, a 5500-m flat-bottom
ocean is assumed; the linear component has 33 levels,
chosen as in Levitus (1982), with 8 levels in the upper
125 m. The two layers used to simulate the nonlinear
effects and high-order baroclinic modes span the upper
125 m and are divided by a surface mixed layer whose
depth is prescribed from observations. Details of the
model configuration and parameters are given by
Keenlyside (2001) and Keenlyside and Kleeman (2002).

b. An SST anomaly model with an empirical
parameterization for T,

An SST anomaly model is embedded within this
dynamic construct. Its governing equation describes
the evolution of mixed-layer temperature anomalies,
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FIG. 1. A schematic illustrating an intermediate coupled atmo-
sphere—ocean model consisting of a dynamical ocean model, an
SST anomaly model with an empirical parameterization for 7, in
terms of SSH, and a statistical atmospheric wind stress (7) model.

among others, determined by ocean horizontal and ver-
tical advections associated with both mean and anoma-
lous currents produced by the dynamical ocean model
(Keenlyside 2001).

It has been well known that subsurface processes at
the base of the surface mixed layer (entrainment and
mixing) are important in controlling SST variability in
the central and eastern equatorial Pacific where the
thermocline is shallow and the mean upwelling is strong
(e.g., ZC87; Kang and Kug 2000). A crucial component
for realistic SST anomaly simulation is, therefore, the
determination of the temperature of subsurface water
entrained into the mixed layer (7,), which is associated
with two terms: entrainment by upwelling and the ver-
tical mixing between the surface mixed layer and sub-
surface layer. Since subsurface temperature field is not
available from the ocean dynamical model, 7, has to be
parameterized for use in the embedded SST anomaly
model in terms of other ocean dynamic quantities, as in
ZC87.

An empirical 7, model has been developed that pa-
rameterizes entrainment and vertical mixing processes
associated with the subsurface temperature anomalies
(Zhang et al. 2003, 2005). Since its geographic distribu-
tion and temporal evolution are not available from ob-
servations, an inverse modeling method is first adopted
to estimate 7, anomalies using an SST anomaly equa-
tion, observed SST variability, and simulated mean and
anomaly currents from the ocean model. In so doing,
for a given SST anomaly equation, the inverted 7,
anomalies yield an optimized estimate of 7, for use in
simulating SST anomalies by balancing various terms in
the heat budget of the mixed layer.

Then, a relationship between the so-determined 7,
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F1G. 2. A schematic showing a statistical method to estimate 7, anomalies from a given
SSH anomaly by an EOF analysis technique.

anomalies and simulated SSH anomalies (a prognostic
field from the ocean model) is obtained by using an
EOF analysis technique. The physical basis is the fact
that thermocline fluctuations in response to atmo-
spheric winds are a primary source of interannual tem-
perature variability throughout the upper ocean in the
equatorial Pacific (e.g., Cane et al. 1986; ZC87; Neelin
and Jin 1993; Jin and An 1999). Characterized by the
vertical displacement of the thermocline, the ocean dy-
namical signal forced by atmospheric winds propagates
very quickly within the equatorial waveguide, remotely
generating a thermodynamic response at the base of the
mixed layer. When the subsurface temperature anoma-
lies associated with thermocline displacement are cre-
ated at depth, SST variability can be produced through
the entrainment of subsurface water into the mixed
layer and/or mixing between the subsurface and surface
layers. Indeed, observations further indicate that varia-
tions in SSH and the thermocline are well correlated
over the equatorial Pacific (e.g., Wang and McPhaden
2000) and that subsurface temperature anomalies asso-
ciated with thermocline displacements are closely re-
lated with SSH variability. These observations and
modeling studies provide a statistical basis for inferring
subsurface temperature anomalies from SSH variabil-
ity. Furthermore, modeling studies demonstrated that
SSH and thermocline depth variability can be relatively
well simulated even in simple ocean models (e.g., lin-
ear, one-vertical-mode model) forced by observed wind
stress anomalies (e.g., McCreary and Anderson 1991;
Busalacchi and O’Brien 1980).

So, a historical data-based empirical relation be-
tween 7, and SSH anomalies is developed to estimate
T, anomalies in terms of SSH anomalies. Such ap-
proaches have been used successfully to construct wind
stress anomalies from a given SST anomaly in many
tropical coupled atmosphere—ocean models (e.g., Bar-

nett et al. 1993). To determine statistically optimized
empirical modes of interannual variability between 7,
and SSH, an EOF analysis technique is adopted for
calculating the relationship between SSH and 7, inter-
annual variations (e.g., Barnett et al. 1993).

More specifically, the procedure with the EOF-based
statistical scheme is as follows (Fig. 2). Monthly 7, and
SSH anomaly data are first normalized by dividing their
spatially averaged standard deviation to form the vari-
ance matrix with which an EOF decomposition is made
into dominant spatial modes (e, and p,,) and the corre-
sponding time series (principal components; «,, and S,,).
The latter are then used to obtain a matrix of regression
coefficients relating the two fields (v,,,). Thus, a given
SSH anomaly field can be converted into a 7, anomaly
using the derived spatial EOF modes (e,,) and temporal
regression coefficients (a,,,).

Two EOF calculations are possible. One is called the
seasonally invariant version (annual model): the EOF
analysis is performed on all time series data irrespective
of season. Another is called the seasonally varying ver-
sion (monthly model): the EOF analysis is performed
separately for each calendar month to construct season-
ally dependent models, giving 12 7, models, one for
each calendar month. In this paper, we adopt the latter.

The SST anomaly model has the same grid as the
dynamical ocean component. At each time step, the
dynamical ocean model produces upper-ocean current
anomalies and SSH anomalies; 7, anomalies are then
estimated from the latter. These current and 7, anoma-
lies, together with a prescribed climatology of mean
currents from the model and thermal fields from obser-
vations, are passed to the SST anomaly model to cal-
culate its own evolution. As has been demonstrated by
Zhang et al. (2003, 2005), the empirical 7, parameter-
ization can significantly improve SST anomaly simula-
tion and prediction in the ICM.
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(b) Taux anomalies (NCEP—NCAR)
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F1G. 3. Anomalies along the equator of (a) SST from Reynolds et al. (2002) and (b) zonal wind stress from the
NCEP-NCAR reanalysis. The contour interval is 0.5°C in (a) and 0.1 dyn cm™? in (b), respectively.

c. The statistical atmospheric model

The atmospheric model adopted in this work is also
statistical, specifically relating wind stress () and SST
anomaly fields. The 7 model is constructed from an
SVD of the covariance matrix that is calculated from
time series of monthly mean SST and 7 fields (e.g., Syu
et al. 1995; Chang et al. 2001). In this work, we perform
a combined SVD analysis of the covariance among
anomalies of SST, zonal, and meridional wind stress
components.

d. Datasets and analysis procedures

Various observational and simulated data are needed
to construct the two empirical models (7 and 7,) and to
verify model simulations. Observed SST data are from
Reynolds et al. (2002). Monthly wind stress data are
from the National Centers for Environmental Predic-
tion-National Center for Atmospheric Research
(NCEP-NCAR) reanalysis (Kalnay et al. 1996). An ex-
ample of these interannual anomalies is shown in Fig. 3
for the observed SST and zonal wind stress anomalies
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along the equator during the period 1980-96. These
data are used to construct the empirical 7, model.

In addition, wind stress data used to construct the 7
model are the ensemble mean of a 24-ensemble mem-
ber ECHAMA4.5 simulation of the period 1950-99,
forced by observed SST anomalies. Using the ensemble
mean data is an attempt to enhance the SST-forced
signal by reducing atmospheric noise.

Historical SSH and current anomalies for the period
1962-99 are obtained from the dynamical ocean-only
integration forced by interannual wind stress anomalies
from the NCEP-NCAR reanalysis; the mean ocean
currents are also obtained from the dynamical ocean-
only simulation forced by climatological NCEP-NCAR
winds. Historical 7, anomalies are estimated by inverse
modeling as follows. First, a relation for 7, in terms of
SST, SST gradients, and ocean currents is obtained by
inverting the SST anomaly equation. Then, this relation
is applied using monthly mean simulated ocean cur-
rents and observed SST anomalies (Fig. 3a of Reynolds
et al. 2002) to estimate 7, for the period 1962 to 1999.

These observed and/or derived anomaly fields are
used to construct the two empirical models during the
period 1963-96 (34 yr of data). As demonstrated by
Barnett et al. (1993) and Syu and Neelin (2000), the
seasonality of the atmosphere and the ocean can have
an important effect on the onset and evolution of El
Nifo. Thus, to construct seasonally dependent models
for T, and 7, the EOF and SVD analyses are performed
separately for each calendar month (a total of 34 tem-
poral samples), and so both models consist of 12 differ-
ent submodels, one for each calendar month. To
achieve reasonable amplitudes, the first five EOF
(SVD) modes are retained in estimating 7, (7) fields
from SSH (SST) anomalies.

e. The coupling procedure

All coupled model components exchange simulated
anomaly fields (Fig. 1). At each time step, the dynami-
cal ocean component produces anomalous ocean pres-
sure, mixed-layer averaged currents, and vertical veloc-
ity at the base of the mixed layer (entrainment). Then
from the SSH anomaly, a 7, anomaly is calculated with
the EOF-based T, model, serving as an interface be-
tween the SST anomaly and dynamical model compo-
nents. The SST anomaly model then takes the 7, and
ocean circulation fields (prescribed mean and simu-
lated), and the observed climatologies of mean SST and
vertical temperature gradient to update the SST
anomaly. The resultant SST anomaly is then used to
calculate wind stress anomalies with the SVD-based
model. These are then used to force the dynamical
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ocean model on the next time step. Information be-
tween the atmosphere (1) and the ocean (SST) is ex-
changed once a day, and the 7, anomalies for the SST
anomaly model are also updated once a day from the
SSH anomalies.

In this coupled system, empirical models determine
two forcing fields: 7 for the dynamical ocean model, and
T, for the SST anomaly model. The amplitude and/or
structure of 7, and T anomalies produced can be further
modified before being used to force the corresponding
component models. For example, as examined previ-
ously by numerous studies (e.g., Barnett et al. 1993; Syu
et al. 1995), coupled behaviors depend on the so-called
relative coupling coefficient (), that is, wind stress
anomalies from the T model can be further multiplied
by a scalar parameter before being used to drive the
ocean model. Similarly, 7, anomalies from the T,
model can also be multiplied by a scalar parameter (3)
before being used in the SST anomaly model, com-
monly referred to as the thermocline coefficient (e.g.,
Neelin and Jin 1993). Several tuning experiments have
been performed with different values of « and B to
examine their effects on coupled interannual variabil-
ity: « = 1.0 and B = 1.0 produce weak anomalies of SST
and 7 in the coupled model; « = 1.05 and B = 1.0
produce a reasonable interannual variability with an
oscillation period of 3 yr. In this paper, we choose a =
1.05 and B = 1.0 in all experiments shown below.

3. Uncoupled and coupled model performances

In this section, the model performances in uncoupled
and coupled simulations, which form the basis for the
prediction experiments presented in next sections, are
reviewed briefly.

a. The T, parameterization

Figure 4 displays the simulated SSH and estimated 7,
anomalies along the equator for the period 1980-90.
Large interannual variability associated with El Nifio
and La Nifia events can be seen. SSH has clear eastward
propagation along the equator, with large anomalies
both in the east and in the west; 7, variability, reflecting
a thermodynamic response, is predominately concen-
trated in the central and eastern basin. There exists a
coherent relationship between SSH and 7, anomalies in
the equatorial region. East of the date line, 7, varia-
tions closely follow those in SSH. When an SSH
anomaly signal propagates eastward along the equator,
T, anomalies can be seen to emerge almost instanta-
neously east of the date line. This indicates that dy-
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ZHANG ET AL.

(b) Te from inverse modeling

2783

(c) Reconstructed Te from SSH
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FIG. 4. Lon-time sections along the equator of (a) SSH anomalies, (b) 7, anomalies derived via the inverse calculation from the SST
anomaly equation, and (c) reconstructed via an EOF-based empirical 7, model from the SSH anomalies, respectively. The contour

interval is 0.2 m? s~2 in (a) and 0.5°C in (b) and (c).

namic adjustment is playing an important role in gen-
erating 7, variability over the central and eastern equa-
torial Pacific. Furthermore, relative to SSH variations,
a delayed response of 7, is evident over the central
basin. For example, after the height of the 1982/83 El
Nifo, although SSH anomalies become negative in the
central basin (Fig. 4a), large warm 7, anomalies persist
there for more than 3 months (Fig. 4b).

An EOF analysis is performed for the period 1963-96
to get eigenvectors and the corresponding time coeffi-
cients from modeled time series of monthly mean 7,
and SSH anomalies. Figure 5 shows the spatial patterns
of the first EOF mode and its associated time series.
The temporal expansion coefficients (Fig. 5c) clearly

indicate that the first mode describes interannual vari-
ability associated with El Nifio and La Nifia events. The
spatial structure represents the pattern of large-scale
variability at the height of El Nifio or La Nifia events.
Clear differences are evident in the spatial structure of
interannual anomalies between SSH and 7,. SSH vari-
ability is characterized by a seesaw pattern across the
basin: one center is located in the eastern equatorial
Pacific, the other in the northwestern Pacific at 10°N.
The T, variability has one center of variability over the
central and eastern equatorial Pacific. The SSH and 7,
centers of variability are not collocated, indicating a
nonlocal nature of their space—time evolution.

A seasonally varying 7, model is then constructed
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from the EOF analysis using linear regression (Fig. 2).
The reconstructed 7, anomalies (Fig. 4c) compare very
well to the original fields (Fig. 4b). With the five modes
included, the amplitude of the reconstructed 7, anoma-
lies is comparable to the original field (Fig. 4b), but the
anomalies are somewhat smoothed with less noise, in-
dicating that the selected EOF modes effectively act as
a low-pass filter. Thus, the first five EOF modes appear
to be sufficient to recover the anomaly strength at a
reasonable level.

b. Uncoupled interannual variability

As described above, the 7 model is constructed from
the ECHAMA4.5 ensemble simulations and observed

SST via an SVD analysis for the periods 1963-96. Then,
given an SST anomaly, wind stress anomalies can be
estimated correspondingly. Figure 6a demonstrates the
reconstructed zonal wind stress variability from the ob-
served SST anomalies (Fig. 3a). Good agreement can
be seen with the NCEP-NCAR reanalysis wind stress
data (Fig. 3b). In particular, zonal wind anomalies ex-
hibit realistically the eastward propagation along the
equator during the onset of El Nifio events (Fig. 6a).
Furthermore, to see whether observed SST variabil-
ity can be realistically simulated with the ECHAM4.5-
based wind stress anomalies, another interannual simu-
lation is performed to simulate SST anomalies using the
empirical T, model constructed from the NCEP-
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(a) Reconstructed Taux (ECHAM)
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(b) SST from EOF—based Te model
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FIG. 6. (a) Zonal wind stress anomalies along the equator reconstructed via an empirical T model from observed
SST anomalies (Reynolds et al. 2002); (b) SST anomalies along the equator simulated from the model forced by
the reconstructed wind stress anomalies shown in (a). The contour interval is 0.1 dyn cm ™2 in (a) and 0.5°C in (b),

respectively.

NCAR simulations (Fig. 5) but using current anomaly
fields from the dynamical ocean model that is forced
by wind stress anomalies constructed from the
ECHAM4.5-based T model (Fig. 6a). Note that the dif-
ferent wind stress fields are independently used to con-
struct the empirical 7, model and to force the dynami-
cal ocean model. In this way, the performance of the
empirical T and 7, models can be collectively evaluated
in terms of SST anomaly simulations. The space-time
evolution of the simulated SST interannual variability
along the equator (Fig. 6b) is in good agreement with

the corresponding observations (Fig. 3a), including the
eastward migration of warm anomalies during El Nifio
events from the western Pacific (e.g., 1982/83 El Nifo)
and the westward spread of cold anomalies during La
Nina events from the eastern basin (e.g., 1988/89 La
Nifia). The quality of the SST anomaly simulation dem-
onstrates that there is little inconsistency between cur-
rent/SSH and 7, anomalies that may have been intro-
duced by constructing the two empirical models from
different wind data. The lack of imbalances in the SST
anomaly simulation provides the basis for a simple
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hindcast/forecast initialization technique (described be-
low).

c. Coupled interannual variability

The coupled system is initiated with an imposed
westerly wind anomaly for 4 months, as in ZC87. Evo-
lution of anomalies thereafter is determined solely by
coupled interaction in the system. Time series of simu-
lated Nifio-1 + 2 and Nifio-3 averaged SST anomalies,
and Nifio-4 averaged zonal wind stress anomalies indi-
cate that the variability has reasonable spatial and tem-
poral structure as well as realistic oscillation periods
(Fig. 7). The most striking feature is that the system has
a pronounced interannual oscillation with a dominant
3—4-yr period, with warm and cold SST anomalies that
can be sustained for up to 1 yr over the eastern and
central basin, similar to observations. No clear phase
lag can be clearly seen in the SST variations at these
two sites, indicating a predominant standing pattern. In
addition, the model reproduces the phase locking of
interannual variability to the annual cycle very well:
The largest eastern equatorial SST variability associ-
ated with El Nifio and La Nifia events always occurs
near the end of the calendar year.

The longitude-time sections of anomalous SST and
zonal wind stress along the equator (Fig. 8) show that
the overall time scale, variability structure, and coher-
ent phase relationships among these anomalies are con-
sistent with the corresponding observations (e.g.,
Zhang and Levitus 1997). SST anomalies from this

coupled model (Fig. 8a) have reasonable structure and
amplitude both over the central and eastern equatorial
Pacific, with a dominant standing pattern on the equa-
tor. A clear phase relationship between SST and zonal
wind stress anomalies can be seen: SST and surface wind
variations are nearly in phase temporally, but have phase
differences in space. While fluctuations in SST are larg-
est in the central and eastern equatorial Pacific, those in
surface winds are dominantly located over the western
and central equatorial regions. During the development
of El Nifio and La Nifa events, zonal wind anomalies
show an eastward migration from the western Pacific
into the central basin, a feature that has been observed
in nature (e.g., Zhang and Levitus 1997). At the height
of El Nino, large warm SST anomalies (~2°C) cover
the whole central and eastern basin, with westerly wind
anomalies being located just west of the date line.

In addition, the model simulation appears to have
other modes of variability, including decadal signals
with double pulses (e.g., during years 01 and 02, and
during years 06 and 07, respectively). Variations in
zonal wind stress also show a biennial oscillation in the
far western Pacific. Detailed analyses of these variabil-
ity modes and the effects of the empirical 7 and 7,
models constructed on coupled variability will be ad-
dressed elsewhere.

4. Initialization of the coupled prediction

The success of a coupled model in predicting SST
anomalies depends on many factors, including the per-
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FiG. 8. Coupled interannual variability of (a) simulated SST and (b) zonal wind stress anomalies along the
equator. The contour interval is 0.5°C in (a) and 0.1 dyn cm 2 in (b), respectively.

formance of each component model, initial ocean con-
ditions, and their consistency at the start time. In par-
ticular, coupled initialization is essential to suppress ini-
tial shock associated with mismatch between model and
forcing fields at the start time of predictions. (An ad-
ditional shock will also occur when the model’s mean
climate differs from the observed.) To address these
problems, a variety of initialization schemes have been
developed. Here, a simple initialization procedure is
adopted that makes direct use of SST observations

(e.g., Barnett et al. 1993), since these data are of supe-
rior quality.

The initialization scheme, which makes use of ob-
served SST anomalies, is as follows. Wind stress anoma-
lies, as have been shown in Fig. 6a, are first constructed
from observed SST anomalies (Fig. 3a) via the SVD-
based T model for a period covering the hindcast period
(January 1963-December 2002). These reconstructed
wind stress anomalies are then used to integrate the
ocean model over the whole hindcast period (or for a
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is obtained by averaging all SST predictions starting from the same months of all years and having the

same lead times during the period 1963-97. The contour interval is 0.2°C.

forecast, up to the beginning of prediction time) to gen-
erate initial conditions for the dynamical component.
The SST anomaly model initial conditions are taken
as the observed SST anomalies (i.e., observed SST
anomaly fields from the previous month are simply “in-
jected” into the model at each start time, the first of
each month).

5. SST anomaly hindcast results

Predictions have been made starting from each
month during the period 1963-2002, each extending out

to 12 months, using the simple initialization procedure
described above. During the prediction period, the evo-
lution of the model states is determined solely by
coupled air-sea interactions in the tropical Pacific
Ocean. In this section, hindcast results are presented
for the period 1963-97, yielding a total of 420 hindcasts,
35 members for each calendar month. To examine the
ability of the ICM to predict changes in the equatorial
Pacific SST, simple anomaly correlations and root-
mean-square (rms) errors are calculated between
model-predicted and observed SST anomalies. Skill es-
timates are computed as a function of lead time, initial
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F1G. 10. Examples of the predicted and observed Nifio-3.4 SST anomalies during the period
1981-95 for 3-, 6-, and 9-month lead times, respectively.

calendar month, and geographic locations. The signifi-
cance of the correlation coefficients is estimated using a
Student’s ¢ test.

Note that, in this section, the 7, and T models that are
trained during the period 1963-96 are used. As such,
the skill for SST predictions can be artificial, because of
observational information of SST and 7 variability cov-
ering the prediction period being already included in

the training period. Also, note that the relative coupling
coefficient and thermocline coefficient are ad hoc tun-
ing parameters and their choices are based on the
model performance of coupled SST variability (i.e., the
amplitude and structure; shown in Fig. 8a). The current
choice of these parameters may represent the best re-
sults in terms of SST prediction skill and thus may have
introduced artificial skill. Further retrospective forecast
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closed circle) shown as a function of lead times. The results are obtained for all predictions
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experiments are needed to examine the sensitivity of
the SST prediction skill to these parameters.

a. Systematic errors

In ocean GCM-based prediction systems, climate
drift is still a significant problem, with large systematic
model biases (e.g., Schneider et al. 2003), which in some
cases are much larger than the anomalies being pre-
dicted. Various practical methods are used to reduce or
remove these systematic errors. Some coupled models
employ flux corrections to reduce climate drift (e.g.,
Chen et al. 2000). In other models, carefully calculated
systematic errors, which are functions of prediction
start month and lead time, are subtracted from the pre-
dicted SST fields to provide a bias corrected forecast

(e.g., Stockdale et al. 1998). Finally, model output sta-
tistics (MOS) corrections are sometimes performed to
enhance prediction skill (e.g., Barnett et al. 1993).
Figure 9 shows systematic errors in predicted SST
anomalies from the ICM, which are defined as the
mean of all SST anomaly predictions for the period
1963-97 and calculated as a function of initial calendar
month. Along the equator, there is a warming trend in
the central and eastern basin, and a cooling trend to the
west (e.g., Fig. 9b). Largest errors (less than 0.8°C) oc-
cur in December with predictions started from January
and April (Figs. 9a,b, respectively). As compared to
other coupled models that have been documented in
the literature (e.g., Chen et al. 2000; Schneider et al.
2003), systematic errors of predicted SST anomalies
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F1G. 12. Horizontal distributions of anomaly correlations between observed and predicted

SST anomalies at 0-, 3-, and 6-month lead times, respectively. The results are obtained for all
predictions made during the period 1963-97 regardless of prediction starting month (420
ensemble members). The contour interval is 0.1.

from this coupled system are significantly smaller—
apparently due to the improved empirical 7, param-
eterization. It is quite clear that climate drift in this
model is not a concern.

Since the systematic biases in SST anomaly predic-
tions are small from the coupled model that directly
produces interannual anomalies, we have not per-
formed any postprocessing procedure to enhance the
skill for SST anomaly prediction. So, the results shown
in this paper below are directly from the model output,
with no additional corrections applied.

b. Predicted SST anomalies

Figure 10 shows examples of predicted and observed
Nifio-3.4 SST anomalies at 3-, 6-, and 9-month lead
times. No systematic bias is evident in SST anomaly
prediction, nor can initial shock be seen at the initial

stage of prediction. The predicted SST anomalies
closely follow the corresponding observations, although
at longer lead times cold SST anomalies produced are
slightly stronger in 1984/85 and in 1988/89. The model
captures the onset and developments of major warm and
cold events, and their transition, quite well. In particular,
a phase delay of predicted SST anomalies relative to ob-
servations, a common feature to some hybrid coupled
models (e.g., Syu and Neelin 2000), is not evident in this
coupled system. However, high-frequency fluctuations
observed in nature are not well represented in the
coupled model; the predicted SST anomalies are instead
quite smooth. In addition, there are few false alarms.

¢. Mean prediction skill

The skill estimates in this section are based on the
full hindcast period, 1963-97, a total of 420 members.



2792

20N
15N

10N

MONTHLY WEATHER REVIEW

(a) Lead time: 0 Month

NE " e \”’LL
g%)) | = Paeocie

5N . 0.4—
N\ﬁ
EQ = : =067 0.8 ==
% @) 0 C gt 0.6< 0,918
5S-§, :,Qm\ (\_\/o\ - = o ==l
108 A : S 0‘4\*& gw—\
155 O 5 2 0.5 0.4 0.5 .
208 : 0.5, ° = e . ,
1208 140E 160 180 1600 1400 1200 100W 80w
(b) Lead time: 3 Months
20N / 0.6 R
151\/-&Q 0'052/_/
1o {58 | ‘

5N

EQ

551

<9

’_\().4

1 S e, e

’/’f\"/_ .O0pa ~
O T, |
Kb m 0.4 0.6—————=20.7
AN 7y \
. b

—

0.8

105 4 o 0.5

155 N A

0 on 140E 160E 180 160W 1401 1201 100W 80w
(c) Lead time: 6 Months

20N

16N
10N

5N 1
EQ A

58

VOLUME 133

PR
Bas T o

o= 0.8:0 70—, ¢

105 57 o \;ﬂ
1651 0.4 (\\7‘\0,4

20 ° :

S T T T
120F 140F 160F 180

F1G. 13. Same as in F’

Anomaly correlation and rms errors between observed
and predicted Nifio-3.4 averaged SST anomalies as a
function of lead times are shown in Fig. 11. The corre-
lation coefficient is at the 95% confidence level if it is
greater than 0.11 according to a Student’s ¢ test. The
model has particularly high skill at short lead times,
with a correlation of 0.97 for the first month and re-
maining above 0.8 out to 4-month lead time. As a re-
sult, the model skill beats persistence at all lead times in
the central equatorial Pacific. This is no doubt due to
the well-balanced model setup, which allows observed
SST anomalies to be used in the coupled initialization
technique with minimal coupling shock. The better per-
formance over the persistence indicates that the model
is able to sustain the observed SST information well in
the coupled system. Beyond 4-month lead time, there is
a steady decrease in skill but the correlation remains
greater than 0.5 up to a lead time of 12 months, with the
rms errors remaining smaller than 1°C over the 12-
month prediction period.

1601 140W 120W 1000 80w

ig. 12 but for rms errors.

Figures 12 and 13 display the horizontal distribution
of the anomaly correlations and rms errors at lead times
of 0, 3, and 6 months, respectively. Results at month-0
lead time, whose SST anomalies along the equator have
been shown in Fig. 6b, present model skills in the forced
simulation by the reconstructed wind anomalies (Fig.
6a) via the ECHAM4.5-based 7 model from the ob-
served SST anomalies (Fig. 3a). A V-shaped pattern of
correlation is evident: high value regions are located in
the central and eastern equatorial Pacific, flanked by
two low bands in northwestern and southwestern sides
off the equator, and another relatively high region in
the far western Pacific. At 0-month lead time (Fig. 12a),
the correlation is over 0.8 in the central basin and over
0.7 in the eastern basin. At 3-month lead time (Fig.
12b), the skill does not drop much in the central basin
and has only a small decrease in the eastern basin; the
correlation remains greater than 0.8 in the central basin
and the rms error less than 1°C over the entire region
(Fig. 13). Geographically, this model performs consid-
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F1G. 14. Anomaly correlations of the Nifio-3.4 SST anomalies during the period 1963-97, as
a function of lead time and start month. The contour interval is 0.1.

erably better in the central equatorial Pacific than in
the eastern basin. With the increase in lead time, the
correlation drops first and fastest in the eastern basin
than in the central basin. At 6-month lead time (Figs.
12¢ and 13c), correlation skill larger than 0.6 is found
over a sizable region of the central Pacific, but east of
110°W, it drops below 0.5, with largest error being lo-
cated in the eastern equatorial and coastal region of
North America. Compared to persistence (e.g., see Ji et
al. 1996; Schneider et al. 2003), the model has better
skill at all lead times in most regions.

d. Seasonality of the skill

To examine the seasonality of skill, correlations are
calculated as a function of initiation month and lead
time for the period 1963-97 (a total of 35 members for
each correlation). Such an analysis for the Nifio-3.4 re-
gion is shown in Fig. 14. A striking feature is that the

prediction skill of SST anomalies is highly dependent
on the seasons, similar to previous results (e.g., Chen et
al. 1995; Schneider et al. 2003), and depends sensitively
on the initiation month. Correlation skill is relatively
low for predictions starting in the earlier part of the
year before April, and significantly higher for predic-
tions starting thereafter. The boreal spring predictabil-
ity barrier is also evident: the most rapid decrease of
skill occurs as the hindcasts pass through the (northern)
spring. The single most rapid drop in skill occurs for
hindcasts started in April and occurs in the first month.
Whereas for hindcasts starting between July to Octo-
ber, skill is maintained significantly higher—starting
around 0.98 and remaining above 0.7 up to a lead time
of 6 months. A partial recovery in skill is also seen after
passing the spring predictability barrier.

More details of the seasonal dependence are shown
in Fig. 15 for the correlations along the equator as a



2794

(a) Jan Start

-
o

MONTHLY WEATHER REVIEW

VOLUME 133

(b) Apr Start
12

-~
-~

-
(=]
!

Q\M’xo.s
- 045"+
8: 0~4fC0>
6- Q

©

Lead Time (months)

11
0.5
10 0.6 \ -
9-
8- & {
7-
0.6

541 =)
L L
N

5.
41 o.5ﬁ\04 4 <
0.7220.8 0.6
31 b L 31 :
ﬂog \/v 0.6
2, A : 21 Jn £ 0.8 -
o i 05
0.4 0.9 N AR
1 0—;5/\/7‘“2" . ' \ﬁ 1 $9-7/. . 0'7TA_—\./
120 150 180 150W 120 90W 120E 150E 180 150W 120W  90W
(c) Jul Start (d) Oct Start
12 12
11 11
"o 101 10
=
9 91
§
S 8 8
oy 7
Q
S 6 - 6
.S
B~ 54 5
"6 4 4
g
'q 3' 3‘
21 0. 2
1 ; : . : — 7 . : ' : :
120E  150F 180 150W 120W  90W 120E 150F 180 150W 120W  90W

FI1G. 15. Anomaly correlations between observed and predicted SST anomalies along the equator
during the period 1963-97, as a function of lead times starting from (a) Jan, (b) Apr, (c) Jul, and (d) Oct
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function of lead time at different start months. There is
a quick decrease in the skill for predictions starting
early in year. For hindcasts starting in January, skill
drops very fast with lead time across the entire equa-
torial basin, while for starts between July and October,
there is a slow decrease along the equator, with the
correlation remaining great than 0.8 in the central basin
until the next spring. Geographically, the correlation
drop begins in the eastern equatorial Pacific and tends
to spread westward along the equator.

It is obvious that the model performs best in the
central equatorial Pacific, and less well in the eastern

equatorial Pacific, where the skill is relatively low and
drops much faster with lead time. At short lead time,
the skill clearly outperforms the Lamont-Doherty
Earth Observatory model (LDEO4; e.g., Chen et al.
2000); at longer lead time (9 to 12 months) the skill is
lower than the LDEO4 in the eastern basin. In addi-
tion, the spring barrier in forecast skill is particularly
strong in this coupled system.

6. Cross-validation studies

The EOF-based empirical 7, model developed here
is empirical in nature. As with any statistical method, its
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same or overlapping periods (dependent cases) or from different period (independent cases), respectively. The contour interval is 0.1.

performance in simulation and prediction depends on
several factors, including the data period selected for
estimating the SSH-T, relation (the training period),
which is then used to predict SST anomalies (the pre-
diction period). If the training period overlaps the pre-
diction period, the SST prediction skill may be partly
artificial, since observations (SST) have already been
included in both the inverse estimation of 7, and the
SSH-T, regression analysis. In this section, sensitivity
experiments are presented to assess the artificial skill
contribution. Note that in this paper, we are focusing on
the T, effects on SST prediction, and the cross valida-
tion is only applied to the empirical 7, model of the
coupled system (Fig. 1). Further experiments are
needed to perform the cross validation for both the
empirical T, and T models simultaneously.

Hindcasts are performed with two additional 7, mod-
els, constructed for the periods 1963-79 and 1980-96,
respectively. The experiments are termed dependent
(independent) cases when the prediction and training
periods overlap (do not overlap). Figures 16 and 17
show the correlations between predicted and observed
SST anomalies separately calculated for the two peri-
ods 1963-79 and 1980-97, respectively. Results with the
T, model constructed from the entire period 1963-96
are also shown for reference. As expected, the SST
anomaly correlation values for the dependent cases
(Figs. 16a,b,d,e and 17a,b,d,e) are higher than those for
the independent cases (Fig. 16¢c, 16f, 17¢, and 17f).
However, the differences in general are not large. Over
the central equatorial Pacific the drop in skill is not
more than 0.1 at 3- and 6-month lead time. In the east-



2796

Lead time: 3 months
(a) Dependent case: Te (1963-96) => 1980-97

MONTHLY WEATHER REVIEW

VOLUME 133

Lead time: 6 months
(d) Dependent case: Te (1963-96) => 1980-97

>

15N

10N

20N — v < 7
500 1o
0.4 i )
QS =07 et T
0.8'
7

0.8,
d\

S
15K

>
)\

- SZ/SE%“?MO//

o 0.4 0.7 Oé

B0

58

108

158

208

120F 140 160F 180 1601 1408 1200

(b) Dependent case: Te (1980-96) => 1980-97

208,
1208

(e) Dependent case: Te (1980-96) => 1980-97

140F 160F 180 160 1408 1208

J
15N

=0
08 L2

20N TP
0.4.
0"\/\/_’
I
0.5/0-65.—7—/V

W
15N g“

) 0504
108 0.6 on{ 34 : —0.
0.4 3 ;,@ 7 g AS\
5N y SN Q/\Va.v
405 /]\
1 ol O ) e 4,
55 i 58 @ :
4 S \04 13 W 77
108 0.8 0.7 108 -
e it 3 .
158 . = i 1
g ' 0.5, 04—
208 — 05,
1208 1408 1608 180 1600 1400 1200 1008 aor 1208 1408 1608 180 1608 1408 1208 100F 80F

(c) Independent case: Te (1963-79) => 1980-97

(f) Independent case: Te (1963-79) => 1980-97

20N

<

208
121

R 140 1408 1200 100F A

1208 1408 160R 180 160K 140F 1208 100W ROF

FI1G. 17. Same as in Fig. 16 but for the period 1980-97.

ern equatorial Pacific the drop in skill is somewhat
larger. Thus, the artificial increase in skill due to using
a dependent 7, model is not large. Furthermore, the
correlation obtained from the two independent cases is
still quite high as compared with other model predic-
tions (e.g., Schneider et al. 2003). In particular, corre-
lation values over 0.6 cover a broad area in the central
equatorial basin at 6-month lead time.

7. Forecast experiments during the period
1997-2002

Finally, we present some results from a forecast ex-
periment for the period 1997-2002. Here, the two T and
T, empirical models are both constructed during the
period 1963-96. Thus this experiment is a stricter test of
model than above, since now the 7 model is also inde-
pendently trained. Furthermore, predicting the onset of
the 1997/98 El Nifio event from the late 1996 or early

1997 is still a challenge to many forecast models (e.g.,
Barnston et al. 1999). Figure 18 shows observed SST
anomalies for longitude—time sections along the equa-
tor during the period 1997/98 and for horizontal distri-
butions during the development of the 1997/98 El Nifio
event. The model prediction results are presented in
Figs. 19 and 20.

The model successfully forecasts the 1997/98 EI Nifio
event and the following cold event at 12-month lead
time (Fig. 19a). The onset of the 1997/98 El Nifo event
is surprisingly well predicted from early 1997. The am-
plitude of the 1997/98 El Nifio event is captured quite
well, but the rapid warming in the late spring of 1997 is
underestimated. There is a slight delay in peak time
relative to observation, with a shorter duration of the
warming in spring 1997. The model also predicts the
turnabout into the La Nifia event in early 1998 well,
though the cooling takes place too early and too
strongly. Figures 19b and 19c¢ demonstrate the evolu-
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tion of the predicted SST anomalies along the equator
started from January 1997 and January 1998, respec-
tively. As compared with the corresponding observa-
tions (Fig. 18a), the predicted SST variability along the
equator for 1997 and 1998 has reasonable structure
over the equatorial Pacific, although in the eastern
equatorial Pacific the amplitude of the 1997/98 EI Nifio
event is underestimated (Fig. 19b) and the cold anoma-
lies are overestimated (Fig. 19¢).

The spatial structure and evolution of predicted SST
anomalies during the onset and development of the
1997/98 El Nifio (Fig. 20) is in good agreement with the
corresponding observations (Figs. 18b—d). The warming
can be predicted one year in advance: the signal first
appears over the western equatorial Pacific in early

1997 (Fig. 19b), followed by a warming in the eastern
equatorial Pacific in May-June (Figs. 19b and 20a).
During the summer and fall, the warming grows rapidly
both in the central and eastern basins. By December
1997, warm anomalies cover the entire equatorial basin
(Fig. 20c).

The correlation between predicted and observed SST
anomalies is further shown in Fig. 21 for the period
January 1997-December 2001. The prediction skill for
this period is quite comparable with or even superior to
that from other periods shown above (e.g., Figs. 12, 16,
and 17). These results are very encouraging and clearly
indicate that the prediction skill of the coupled system
is not particularly dependent on the data periods se-
lected for constructing the two empirical models. Al-
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though the periods selected for this forecast test may be
too short to produce stable statistics for the coupled
system, the artificial skill introduced through the two
empirical 7, and T models that are constructed from
historical data appears not to be significant.

8. Discussions and conclusions

A new ICM for El Nifio simulation and prediction is
described by improving its ocean dynamics and ther-
modynamics, which include varying stratification, cer-
tain nonlinear effects, and an empirical parameteriza-
tion of 7,. Both accurate simulations of surface currents
and of entrainment processes are key factors in accu-
rate simulation of SST variability across the equatorial
Pacific. In this paper, we have focused on empirical
parameterizations of 7.

There are two steps involved in deriving the empiri-
cal T, parameterization from historical data. First, an

optimized estimate of 7, is made from model simula-
tions and observations via inverse calculation of the
SST anomaly model. Second, a statistical relationship
between the dominant variability patterns of SSH and
T, is calculated in a reduced EOF space using regres-
sion analysis. This nonlocal scheme is able to better
parameterize 7, anomalies than other local schemes.
An improved 7, parameterization naturally leads to
better depiction of the subsurface effect on SST vari-
ability by mean upwelling of anomalous subsurface
temperature. As a result, SST anomaly simulations are
significantly improved in the tropical Pacific Ocean.
The improved ocean model is coupled to a statistical
atmospheric model that estimates wind stress anoma-
lies based on an SVD analysis between observed SST
anomalies and wind stress anomalies from ECHAM4.5
ensemble simulations. The seasonal variations of atmo-
sphere and ocean feedbacks are taken into account by
constructing seasonally varying versions for both the 7,
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and 7 models. The coupled system exhibits a variety of
behavior for a range of parameters that are in good
agreement with observations, including a 3—4-yr oscil-
lation period and a dominant standing pattern of SST
variability on the equator. This coupled system does
not have large systematic biases in terms of SST simu-
lations.

Twelve-month-long hindcast experiments are per-
formed with the model over the period 1963-97. The
predictions are initialized using a coupled initialization
technique that only uses observed SST anomalies.
Wind stress anomalies are first constructed from ob-
served SST anomalies via the ECHAM4.5-based 7
model and are then used to integrate the ocean model
up to the beginning of prediction time to generate ini-
tial conditions for the dynamical component. In addi-

tion, the observed SST anomaly fields from the previ-
ous month are simply “injected” into the model at each
start time of predictions. Compared to other docu-
mented coupled models, systematic errors of predicted
SST anomalies are significantly smaller in this coupled
model—apparently due to the optimized empirical T,
parameterization. The skill is very high at short lead
times, and so the model skill beats persistence at all
lead times (out to 12 months) in the central equatorial
Pacific. It seems that the injection of observed SST
anomalies prior to each prediction is an important con-
tributing factor to the improved skill of SST predictions
at short lead time. The model is most successful in pre-
dicting central Pacific SST anomalies. However, model
skill is strongly seasonal dependent, with significant
skill loss during the boreal spring season.
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Cross-validation experiments are performed in which
the training period for the empirical 7, model and the
prediction period do not coincide. These experiments
show that independently and dependently trained mod-
els have approximately the same skill correlation over
the central Pacific. The sensitivity to data periods se-
lected for training 7, models appear to be small, and
the artificial skill is not significant. This has been fur-
ther demonstrated in an independent prediction experi-
ment for the period 1997-2002, including the 1997/98 El
Nifio. This experiment is yet a stricter test, since the 7
model is now also trained on independent data. The
model reproduces the transitions to the warming in the
early 1997 and to cold phase in the spring of 1998 quite
well. In particular, the model has a successful forecast
for the onset of the 1997/98 El Nifio initializing from the
early 1997.

It is interesting to compare this ICM forecast system
with the current and previous versions of the LDEO
ICM forecast system (Cane et al. 1986; ZC87; Chen et
al. 1995, 2000). Through various techniques, the LDEO
forecast system has been improved from the early ver-
sions (LDEO1, LDEO2, LDEO?3) to the latest version
(LDEO4). The systematic biases in the earlier LDEO
system have been successfully removed in the latest
version (Chen et al. 2000). Our new ICM described
here does not show obvious systematic bias in simula-
tion and prediction of SST anomalies, perhaps due to
the empirical parameterization of 7,. Although the
LDEO system still has difficulty in initializing forecasts
directly with SST observations, the present coupled sys-
tem uses only observed SST fields to initialize predic-
tions. Perhaps benefiting from this initialization proce-
dure, the present ICM has better skill than LDEO4 at
short lead times (below 4 months). Spatially, the two
ICMs have different geographic skill dependence: our
ICM has better skill in the central equatorial Pacific,
but the LDEO4 is better in the eastern basin. At long
lead times (beyond 9 months), the LDEO4 has better
performance than ours particularly in the eastern equa-
torial Pacific.

The results described in this paper represent our pre-
liminary attempts to develop and improve an interme-
diate system for better El Nifio simulations and predic-
tions. Further refinement and extension are underway.
Some possible error sources are obvious in the system.
For example, the empirical 7 model is derived from
ECHAMA4.5 simulations forced by observed SST
anomalies; potential errors in the atmospheric model
are implicitly included in the construction of the em-
pirical = model. The T, parameterization scheme we
developed empirically works best in the tropical central
and western Pacific. In the eastern basin, where the
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ZC87 scheme outperforms ours, there is clear room for
improvement, and an optimal combination of these two
schemes may potentially improve SST prediction across
the entire basin. In addition, we only use observed SST
in the initialization in this work; using more observed
information in the prediction procedure in principle
should constrain the system more effectively (i.e., com-
prehensive data assimilation and coupled initializa-
tion).
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