
Lecture 6: Ideal gas ensembles

1 Introduction
A simple, instructive and practical application of the equilibrium ensemble for-
malisms of the previous lecture concerns an ideal gas. Such a physical system is
distinguished by the property that the system energy is independent of particle
position since the molecules are assumed not to interact through a long range
potential1. This weak interaction assumption works reasonably well for many
gases in practical applications and so they are termed ideal to a good approxi-
mation. Some brief remarks on deviations from this are made at the end of the
lecture. In order to illustrate the ensemble methods developed in the previous
lecture we perform calculations for the microcanonical ensemble as well as the
grand canonical ensemble.

2 Microcanonical ensemble
We follow here a heuristic rather than rigorous presentation for pedagogical
reasons. As should be clear from the microcanonical ensemble members ly-
ing on a submanifold of phase space, there are some important mathematical
technicalities which here we avoid for clarity. Heuristically we can write the
microcanonical density in phase space as proportional to

D =
1

~3NN !
δ

(
E0

ET
− E

ET

)
=

1

~3NN !
ET δ (E0 − E)

where δ is the Dirac delta function (i.e. a distribution); E0 is the mean ther-
modynamical energy and ET is a reference energy to ensure dimensional consis-
tency. Note that E is not fixed like E0 and ET but depends on the phase space
variables. Now in a distribution sense we have

δ(x− y) =
∂

∂x
θ(x− y)

where θ is the Heaviside step function. The microcanonical partition function
ZM is the integral over phase space of D since it is the normalization factor. We
have therefore

ZM = ET
∂

∂E0

ˆ
dNpdNq

~3NN !
θ (E0 − E)

Consider now the integral

IN =

ˆ
dNpdNq

~3NN !
θ (E0 − E) .

1Molecules do however collide and this affects system non-equilibrium behavior as we shall
see later. In the present context we assume such collisions do not affect total energy i.e. a
system in which no collisions occurs has almost the same energy as the realistic case in which
collisions do occur.
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For an ideal gas E depends only on the momenta p of the molecules and
not on their position q. Note though that the gas is assumed to be confined
to a particular volume so the integrals over position result in a power of the
confining volume which we call V . We have therefore the simplification

IN =
V N

~3NN !

ˆ
d3p1 . . . d

3pNθ

(
E0 −

N∑
i=1

p2
i

2m

)
where we are using the expression for the kinetic energy of a free molecule of
mass m. Non-dimensionalizing the momenta using E0 as follows

xi =
pi√

2mE0

we obtain

IN =
V N

~3NN !
(2mE0)

3N/2
C3N

Cd ≡
ˆ
dx1 . . . dxdθ

(
1−

d∑
i=1

x2i

)
Now from the nature of the step function the latter integral is clearly the

volume of a hypersphere of dimension d and radius 1 which can be shown to be

Cd =
π

d
2

Γ(d2 + 1)

Inserting this into our expression for IN and differentiating this with respect
to the thermodynamical energy E0 we obtain for the microcanonical partition
function

ZM =

[
V (2mE0)

3/2

~3

]N
3NET

N !2E0Γ (3N/2 + 1)
(1)

The entropy S(E0, N, V ) is simply the logarithm of this partition function
since the microcanonical density is uniform on the submanifold of constant
energy. Now the objects of interest thermodynamically are those which apply
in the limit that N → ∞ i.e. the number of molecules becomes very large.
Of course in such a limit both the energy and entropy also become infinite so
we define energy, entropy and molecular densities which are simply ε = E0/N ,
s = S/N and n = N/V . These converge in the thermodynamical limit and
a straightforward computation (albeit a little tedious) gives for the entropy
density (i.e. entropy per molecule)

s = log

[
e5/2

n~3

(
4πε

3

)3/2
]

(2)

a result for ideal gases known as the Sackur-Tetrode equation. Notice that it
does not involve the reference energy ET . Furthermore that it is also the result
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of taking the thermodynamical limit. The expressions for a finite number of
molecules i.e. (1) and the like are by contrast complicated functions of N . Note
finally that the ideal gas simplification allowed the computation to be reduced
to that of computing the volume of a hypersphere. If this simplification had not
occurred the calculation would have been potentially considerably more difficult.

3 Grand canonical ensemble
The computation in the previous section is a little cumbersome as it involves
“hypergeometry” and the result for the partition function (1) is a rather complex
function of N the number of molecules and requires the thermodynamical limit
to interpret clearly. Canonical ensembles are usually easier to work with. We
show here the grand canonical calculation beginning with a calculation of ZG
the partition function. In the last lecture we computed

ZG(λ1, λ2) ≡
∞∑
N=0

ˆ
R2N

exp
(
−T−1E + µT−1N

)
dV

dV =
dNpdNq

~3NN !

λ1 = −T−1

λ2 = µT−1 (3)

The integral over phase space can be carried out rather easily for an ideal
gas since it is simply

E =

N∑
i−1

p2i
2m

(4)

Thus it does not depend on the position of molecules and the dependency
with respect to momentum results in a Gaussian function which is trivially inte-
grated. The position integration results in a factor of V N while the momentum
integration of the Gaussian gives a factor of (2πmT )

3N/2 hence

ZG =

∞∑
N=0

1

N !

[
V eµT

−1

(2πmT )
3/2

~3

]N
which is a McLaurin series for an exponential function:

ZG = exp

(
V eµT

−1

l3

)
(5)

where the length scale l is the quantum wavelength of a molecule of energy
T and is called the thermal wavelength:

l ≡ ~
√

2π

mT
= ~

√
2π

m

√
−λ1
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The expression (5) is very simple and presages simple thermodynamical re-
lations for an ideal gas. From equation (3) it is easy to derive that

N =
∂ {logZG}

∂λ2

E0 =
∂ {logZG}

∂λ1
(6)

and hence using (5) that

N =
V eµT

−1

l3

and hence that the particle density n = N
V is

n =
eµT

−1

l3
(7)

Likewise the thermodynamical energy can be derived from (6)

E0 = V eλ2
∂

∂λ1

(
l−3
)

= V eµT
−1 3

2
T l−3 =

3

2
NT

and so the energy per particle ε is simply

ε =
E0

N
=

3

2
T (8)

a very well known result from elementary thermodynamics of an ideal gas.
Now the entropy for the grand canonical ensemble may be derived in the

same way we did in the last lecture for the canonical ensemble obtaining the
modified relation

S = T−1E0 − µT−1N + logZG (9)

Furthermore from Lecture 3 we know that

p

T
=
∂S

∂V
=

∂

∂V
(logZG)

Hence using (5) and (7) we obtain

p = nT (10)

another well known ideal gas equation sometimes called the equation of state.
Now from (9) and (8) we can derive an entropy density equation

s =
S

N
=

5

2
− µ

T
(11)
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We can also obtain the chemical potential µ from (7) and (8):

µ =
2

3
ε log

(
nl3
)

Substituting into (11) we obtain

s = log
e5/2

nl3

when the definition of l is used we can see that this is the same equation
we derived above using the microcanonical ensemble i.e. the Sackur-Tetrode
equation (2). Notice how the grand canonical ensemble calculations were able
to rather rapidly access much of the thermodynamics of the ideal gas. This is
in contrast to the rather cumbersome and limited microcanonical calculation.
Note though that they coincide in the thermodynamical limit.

4 Non-ideal behavior
The ideal gas assumption ignores the energetics of molecular interactions. Un-
der certain circumstances collisions between molecules can become significant.
This is dealt with by introducing a potential function which varies with the dis-
tance between any two particles (multiple collisions are extremely rare). This
potential function modifies the energy equation (4) by the introduction of a
function depending on molecular positions. The exponential of this function
must then be integrated over with respect to any two molecules. In the ideal
case the molecular position integrals simply resulted in a factor of V N . With
the potential function this is modified in such a way that depends on the gas
temperature T and this additional effect modifies the usual ideal gas equations
(8) and (10).

An excellent introduction to these effects may be found in Landau and Lif-
schitz Chapter VII.
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