Lecture 5: Statistical Equilibrium Ensembles

1 Introduction

It is clearly important to know what the probability density is for a system in
equilibrium. This will be a function of the microstate i.e. phase space vari-
ables. Given such a density we can then calculate the system entropy using the
Gibbs/Shannon entropy functional on such densities and from this determine
most thermodynamical variables of interest in the manner described in the last
two lectures. This is the basic approach of equilibrium statistical mechanics
which derives a system thermodynamics from the properties of the constituent
fine grained elements. For materials this means molecules but can sometimes
be extended to more general situations such as fluids.

The particular form of this target probability density will depend obviously
on the energetics of the molecules i.e. the precise form of E(p,q). It will also
depend on the way in which equilibrium is set up for the large scale system.
Historically three different configurations have been considered:

1. Completely closed to the environment. Here conserved quantities for the
dynamical system will be constant in time. Such a configuration is termed
microcanonical.

2. Open to exchanges of energy only with the environment. In this case if
the system reaches equilibrium then the total energy will show very small
fluctuations from a mean value as discussed in previous lectures. This is
due to the energy interchange with the environment. Such a configuration
is termed canonical.

3. Open to exchange of energy and molecules with the environment. This
is an extension of the previous case. Here both the total energy and
number of particles will be subject to small fluctuation about means of
both quantities. This configuration is termed grand canonical.

Now as time proceeds in these three equilibrium configurations the microstates
will not be fixed in general which is the reason for seeking an equilibrium prob-
ability density. We hypothesise that this exists and is time invariant. It is
sometimes referred to as an invariant measure for the system i.e. a measure
which remains the same under time translations. A (large) sample of microstates
drawn from such a density is commonly called an ensemble and was introduced
as an analytical tool originally by Gibbs. Behind it however lies the central
concept of an equilibrium density or invariant measure. The densities for the
three different configurations above differ and the last two are in practise the
easiest to compute. In the limit that the number of molecules becomes infinite
they are supposed to converge to each other (this is called the thermodynamical
limit).



2 Microcanonical ensemble

The closed property for this case ensures that the system lies always in a partic-
ular submanifold of phase space. This is specified by the values of invariants for
the system with energy being the most commonly considered. We have therefore

E(p,q) = Ey

and this defines a generally closed and compact submanifold C' of phase
space of dimension 2n — 1 where n is the number of particles. Since the system
is so constrained then all probability densities (equilibrium or otherwise) must
be defined as non-zero only on this submanifold. The 2n —1 dimensional volume
for C' is of central significance to this situation and we denote it by V(C) and

have
/Cl =V(C)

Now suppose we have two different densities p and ¢ defined on C' then their
relative entropy is

p
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Now select ¢ to be uniform on C. This makes sense if C' is compact of
finite 2n — 1 dimensional volume. Now it follows from the relative entropy
non-negativity that
/ plogp > logq

i.e.
1
S(p) < 1og5 = 5(q)

where S here is the Shannon entropy. This immediately implies that ¢ is
the density of maximum entropy for the system and therefore by the princi-
ple outlined in the third lecture the equilibrium density for the microcanonical
ensemble. It is further easily seen that
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This formulation of entropy was first proposed by Boltzmann in a slightly
different form to take into account the units of phase space volume and to set
the temperature unit to degrees rather than joules.

Boltzmann hypothesised that the maximum entropy density uniform on C
was actually achieved in equilibrium. One can actually examine this issue in
tractable simple dynamical systems and it turns out that the situation is some-
what more complicated than this: One needs to be rather careful from a math-
ematically technical viewpoint in stating this result. Indeed there can exist



members of the microcanonical ensemble that are never visited in any equi-
librium configuration. These have however Lebesgue measure zero. The hy-
pothesis that all microcanonical ensemble members are “equally likely” was first
stated by Boltzmann and was called the ergodic hypothesis. It was shown to be
strictly untrue around 1913 but was replaced by the quasi-ergodic hypthosesis
which very roughly means any coarse graining of the submanifold C' with equal
Lebesgue measure will have equal probability measure. This was proven by
Birkhoff and Von Neumann in the 1930s. More details in the review [1].

3 Canonical ensemble

The calculation of the entropy in the case of the microcanonical ensemble can be
difficult since it involves the volume of a constraint submanifold. A somewhat
easier approach mathematically comes with the more practically realistic case
of the canonical ensemble where energy exchange is permitted with the environ-
ment. As a consequence when equilibrium is achieved total energy fluctuates
slightly since molecules inside and outside the system of interest are always
exchanging energy. Some reflection indicates however that as the number of
molecules gets larger such fluctuations become smaller. We analyze this further
in later lectures. In the “thermodynamical limit” as the number of molecules
becomes infinite these fluctuations approach zero and the canonical and micro-
canonical ensembles converge.

We make the assumption that the equilibrium density is invariant under
time translations which seems reasonable for a statistical equilibrium. It follows
now that the expectation value of total energy with respect to the equilibrium
density is also invariant!. From this we can derive the form of the equilibrium
density using the maximum entropy principle as we did for the microcanonical
case. We do this using Lagrange multipliers: Suppose the required probability
density is o(p, q). Assume that the following relations hold

/Q(p, q)E(p,q) = Ey (1)

where Fj is the fixed mean energy of the ensemble and the integral is over
all phase space not just the constraint submanifold as in the last section.

The problem then becomes to find o(p, q) subject to the requirement that
the associated differential entropy S is maximized and (1) is met as well as the
normalization condition:

/ op,q) =1

Let the Lagrange multiplier for the energy constraint be A\; and that for
the normalization condition be A\g and maximize the augmented functional with

respect to p
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IPut another way, the canonical ensemble mean energy is fixed.




Taking the functional derivative with respect to ¢ and setting to zero we get
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which implies that the maximum entropy distribution must have the form
op,a) = Z7'(M)exp(ME(D,q)) (2)
Z(A1) /exp (A E(p, q)) dgdp = exp(1 — o) (3)

where the partition function Z is need to ensure that ¢ is normalized as a den-
sity. Notice that this maximum entropy density has precisely the form deduced
in Lecture 2 using the steady Liouville equation and the additivity of system in-
variants across subsystems. The density in equation (2) is of central importance
to equilibrium statistical mechanics and is called the Gibbs density. Empirically
it can be shown to apply in many different systems of practical interest. It is par-
ticularly convenient since it requires only knowledge of the system total energy
as a function of phase space co-ordinates.

Using Lagrange multipliers we have established that the Gibbs density is a
neccessary condition for a maximum entropy density but is it sufficient? The
information theoretic argument given at the end of Lecture 2 actually establishes
this since it shows that the entropy of any density with mean energy FEj is
bounded above by that of the Gibbs density with equality iff they are equal.

Notice that there is a different Gibbs density for each choice of A\;. We can
interpret this parameter by holding it fixed and calculating the entropy:

S =Sy = —/Qlogg
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Now the Ej is the thermodynamical energy discussed in Lecture 3 so for the
equilibrium system under consideration
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thus the Lagrange multiplier is simply minus the reciprocal of the system
temperature. Note also that the partition function Z is an important part of the
entropy and is a non-obvious function of the inverse temperature via equation
(2) and the total energy function of the phase space co-ordinates.

4 Grand canonical ensemble

This is the most realistic situation in which the open system exchanges both
energy and molecules with the environment but has a steady equilibrium density.



The mathematical formulation is a little more technically complicated since
the phase spaces of systems with different numbers of molecules have differing
dimensions but this is not important to the final result obtained: Define an
outcome space

X =N®R™
and a probability density P which satisfies the restriction

P(N,z)=0  whenx ¢ R*N Cc R® (6)

where N is the number of molecules and R?N consists of real sequences with
zeros beyond the 2N position.

A further complication concerns the phase space of identical particles: If one
permutes identical particles then the microstate obtained remains the same. To
avoid multiple counting of the same microstate, one divides phase space volumes
by the number of possible permutations i.e. by N!. The concept of indistin-
guishability of particles is fundamentally a quantum one since in classical me-
chanics one could in principle label each molecule and keep track of them. This
is not possible in quantum mechanics which of course is the more fundamental
(and correct) physical theory?. We therefore weight volume elements in phase
space as follows
dVpdNq
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where Planck’s constant / has also appeared for dimensional consistency as
discussed in Lecture 1. Now the expected (mean) number of molecules N is
then

dVv =

Z NP(N,z)dV

R2N

while the expected energy F is

Z N,x)P(N,x)dV

R2N

and the normalization condition for the density P is

1= / P(N,z)dV
N;)Rw( )

For a time invariant P these expectations must always be fixed and so
macrostates are specified using both the mean number of molecules and the

2Note that this issue is not important for the other two ensembles discussed earlier since
there this additional factor is a constant. Note also that quantum mechanics is making an
unavoidable intrusion into our basically classical presentation. In this course we make little
mention of quantum statistical mechanics which can in certain situations be very important.
Our presentation relies on the correspondence principle of quantum theory which says that
under many other circumstances classical theory is asymptotically appropriate.



mean energy. We can now solve the maximum entropy constrained optimiza-
tion problem with three constraints® rather than two and obtain in a similar
way to the canonical ensemble

7lOgP71+)\1E(N,CC)+>\2N+>\O =0

Thus we obtain

P(N,z) = Z;'exp(ME(N,z)+ \2N) (7)
Za(M,Ns) = Z/ exp (M E(N,z) + X2 N) dV (8)
N=0 /BN

In a similar fashion to the canonical ensemble P may be shown to achieve the
maximum entropy. Also in a manner similar to the canonical ensemble we can
calculate the entropy and after differentiation by the mean number of molecules
obtain

Ao = (9)

hence this second multiplier is related to the chemical potential of the system.

5 Partition function and thermodynamics

As we have seen for the canonical ensemble Z(\1) is an important component of
the Gibbs density. It can be related in an interesting way to a thermodynamical
potential we met in Lecture 4. Combining (4) and (5) we get up to a constant
reference entropy4 that

log Z = (TS — Eo)/T = —F)T (10)

where F' is the Helmholtz free energy thermodynamical potential introduced
in the previous lecture and because the mean energy FEj is the thermodynamical
energy. Now in general Z will depend on both T since this is minus the inverse
Lagrange multiplier, as well as the volume V of the system since the integral
used to obtain Z depends on integrals over the locations of molecules. Thus if
we are able to calculate Z for a particular system then we also have the free
energy F' as a function of T and V. We are then able to compute pressure
and entropy by simple partial differentiation and we have the full set of ther-
modynamical variables for the system. A similar procedure extends this to the
grand canonical ensemble where the chemical potential makes an appearance as
a further thermodynamical variable. For the canonical ensemble the calculation
of Z depends crucially on the form of the total energy which for many systems
can be decomposed into two pieces:

E(p,q) = K(p) +V(q)

3Strictly speaking we should impose further constraints to ensure (6) is met but these can
easily be seen to amount to imposing these conditions a posteriori on the maximum entropy
P.

4This can be eliminated by redefining Z by dividing by a constant




i.e. into kinetic and potential energy. The kinetic energy is a simple quadratic
form for the momenta and so the integral over this part of phase space is rather
easy since it is the integral of a Gaussian function. Most of the work then usually
occurs in integrating the potential energy over the molecular position variables.
For an ideal gas this potential term vanishes. We consider this simple case in
the next lecture.
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