Lecture 3: Thermodynamics 1

1 Introduction

Historically the way in which statistical physics developed was by first observing
the macrostate of systems of many particles and deriving functional relations
between large scale variables of significant interest to the behavior of the sys-
tem. This field of empirical study is referred to generically as thermodynamics.
Later as the molecular view of matter gained credibility amongst physicists an
important topic was the justification of these macrostate rules using the known
properties of the microscopic molecules. In order to understand this subject
then it is useful to first gain an understanding of the basis and form of thermo-
dynamics. As we noted in previous lectures the bulk variables for open systems
such as the total energy are not constant but instead are subject to usually
very small variations which are termed fluctuations. The assumption behind
the study of thermodynamics is that such fluctuations can be ignored because
the systems of interest consist of enough molecules to make them negligible.
Macrostates can be specified in general by the mean of the bulk variables which
for an equilibrium system are conserved quantities. In the limit that the num-
ber of molecules becomes infinite the fluctuations vanish and the macrostate
specification is the same as specifying the bulk variable. In a later lecture we
look at the fluctuations but for now we ignore them.

2 The principle of increasing entropy

Consider a closed system consisting of a series of (open) macroscopic subsystems
with equal numbers of molecules. Assume that each subsystem is in equilibrium
internally but not with each other!. As argued in the previous lecture each
subsystem will have (to a good approximation) a Gibbs distribution which in
the simplest case is specified by the subsystem mean energy. Assume that these
mean energies are not all the same. From the Gibbs distribution we can deduce
the entropy of each subsystem using the formula derived in the first lecture. Now
if we further assume?, as we did in the last lecture, that the joint probability
distribution for the entire closed system is the product of all the individual
Gibbs distributions then it follows that the total entropy of the system is the
sum of the subsystem entropies i.e. entropy is an additive macroscopic variable
like energy.

As time proceeds it is empirically observed that the total system entropy
monotonically increases® and in equilibrium a maximum is achieved in which

IThe system must be considered on a sufficiently long time scale for this to be the case.
Such a time scale is generally rather short relative to the timescale with which the system as
a whole relaxes to equilibrium.

2This assumption may be verified empirically to be approximately correct.

3The fluctuations discussed previously may lead to a very small violation of this law.
Thermodynamics is formally the limit that these fluctuations vanish.



the mean energies are all equal. This is commonly known as the second law
of thermodynamics and is a central organizing principle in thermodynamics.
It is important to note that this principle is appropriate only for a closed i.e.
isolated system. In an open system entropy may be added from the system to
the environment resulting in a local decrease but an overall total increase. The
second law is an empirical fact of macroscopic systems and no violation has ever
been observed*. Actually “proving” it is so from first principles is non-trivial.
Indeed the second law implies an arrow in time which is absent from the classical
dynamical equations since these are invariant under a reversal of time. This has
been a topic of endless fascination since statistical mechanics was first proposed
by Boltzmann and it is fair to say still remains not fully understood. When we
deal with non-equilibrium systems later in the course we shall revisit this issue.

3 Temperature

To date we have met two macrovariables of interest namely the energy and en-
tropy. As we noted in the previous section a system in equilibrium is character-
ized by having a maximum entropy if we take the second law of thermodynamics
as given. Consider now a closed system consisting of two open systems that are
in equilibrium with each other. The entropy and energy of each subsystem being
denoted by FE7, E5 and Sy, S5 respectively with £ = E; + Fy and S = 51 + S5
being the total energy and entropy of the combined system and E is a constant.
Consider now the simple case that entropy is solely a function of energy (we
extend this later):

S; = S(E)
Now for S to be a maximum i.e. the total system to be in equilibrium we require
dS
— =0
dFE
since there is only one independent energy variable. However we have
A8 dS dSydE
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because total energy is conserved. In other words
dsi _ds
dE,  dEs

This argument generalizes to an arbitrary number of systems pairwise in
equilibrium with each other and so we get the condition that

dsS;

dE;

1
= Constant = — 1
onstan 7 (1)

4 Apart from the fluctuation effect.



For all systems to be pairwise in equilibrium. Thus the derivative of entropy with
respect to energy is a fundamental marker of equilibrium and the inverse of this
constant is called the temperature T of the total system in equilibrium. Recall
now the way we have defined entropy in earlier lectures as the Shannon entropy
plus a constant. Suppose we take the probability density of the macrostate to
be the Gibbs distribution i.e.

o= Aexp (aF)
where

A7 0) = [ dpdaex (aE(p. ) = 2(0) (2)

where Z is commonly called the partition function. Let us fix the parameter
a then we obtain
S=—a(E),+logZ(a)+C (3)

where the angle brackets denote expectation with respect to the given Gibbs
distribution. Now it is easily seen that

u=(E),=2" /dpqu(p,q) exp (aE(p,q))

and so u = G(a). Now
as _ ,_,dZ da
du du  du
but using (2)

dz da da
- = /dpdq%E(nq) exp (aE(p,q)) = T 2v

so we obtain due to the first two terms cancelling simply
ds
du

This mean energy u is simply the thermodynamical energy already discussed
above and so we obtain

=—a=p

1
a=—=

T

which reveals the significance of the particular parameter a in the Gibbs
distribution. It is simply minus the inverse absolute temperature.

Now consider two systems not in equilibrium and follow their evolution to-
ward equilibrium i.e. toward states with equal temperatures. The second law
insists that

dS dSy  dSe dSydEy  dS; dE;
dt dt  dt dEy; dt = dE, dt
We now invoke conservation of energy between the two system so that

dE, __dF,
dt ~—  dt



and thus we obtain from above
1 1\ dE
———)=>0
T Ty) dt

Let us assume that the first system has a higher temperature than the second.
Then this inequality implies that

dE,

ez )
a <

i.e. that energy must be flowing from the hot system to the cold system as
the system equilibrates.

Returning now to the entropy S we see that it’s definition as the Shannon
entropy implies that it must be dimensionless. Thus we see from equation
(1) that temperature the way we have defined it has units of energy. If the
temperature of typical bodies are calculated we get very small values for the
temperature so it is convenient to introduce effectively a unit of temperature
(the degree Celsius) which is much smaller than a Joule. The ratio of the two
is given by a constant called Boltzmann’s constant

k=1.38 x 1072 Joules/deg

If the temperature is measured using the small unit of energy namely degrees
then it is conventional often to rescale the definition of entropy by multiplying
our original definition by k. This ensures that all equations derived above work
with temperature measured in degrees rather than in Joules.

4 Further conditions for equilibrium

The two equilibrating systems discussed in the previous section exchanged only
energy. In general other quantities may be exchanged as well and if we assume
that such quantities are conserved quantities for closed systems then the Gibbs
distribution will involve them as well as the energy in other words the entropy
will be a function of not just the energy but also these other invariant quantities.
One example is the number of particles N; and Ns in the two subsystems. If
the systems are able to exchange particles as well then the entropy becomes a
function of the total number of particles as well. Using similar arguments as
we did in the previous section we derive the further condition for equilibrium of
our two subsystems using the maximum entropy principle and obtain

051 05
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where the quantity p has been introduced by this equilibration condition

and is referred to as the chemical potential for the system. Another quantity
which might be exchanged between subsystems is their volume V; if we allow
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the wall between the two subsystems to vary in location. Again the entropy will
be a function of this important variable and using similar arguments we obtain
051 05
oy oV,
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where the equilibrium “label” p is referred to as the pressure. We discuss this
identification of pressure in more detail later. The variables T', ;1 and p are of
central importance to thermodynamics and their derivation from equations (1),
(4) and (5) are called equations of state. Notice the crucial role of entropy to
these equations. Evidently the calculation of entropy in terms of the invariant
quantities is of fundamental significance and reflecting on the definition of this
quantity given earlier, is clearly intimately related to the microscopic character
of the system.

5 Internal energy, equilibrium and non-negative
temperatures

Consider now for simplicity the case where entropy is only dependent on energy.
Clearly in any system this energy cannot include the bulk kinetic energy of the
system since one would not expect entropy to depend on the velocity of the
object being observed due to a principle of relativity. We therefore introduce
the concept of internal energy which is the total energy of a system minus it’s
overall kinetic energy

P2
I=F-KE=F— —
2M
where the system has momentum P and mass M and we have S = S(I).

Clearly we must now define temperature as flﬁ"' for a given subsystem a. Con-

sider now a series of open systems which togethgr make up a large closed system.
The total entropy is then

S = ) Sl

P2

I, = E,—
2M,

Now the fact that the total system is closed means that total momentum
and angular momentum must be conserved (as well as energy). Thus we have

ZP“ = constant
a

Zra x P, = -constant
a

where 7, is the position vector for the particular subsystem. For entropy to
be maximized we require S maximum subject to the previous two constraints.



A necessary condition for this can be derived using a constrained optimization
method i.e. Lagrange multipliers. Thus our optimization function is

L= S.+b.P,+c(roxP,) (6)

where b and ¢ are 3D vector Lagrange multipliers. Now using the chain rule
we have

p? -P, a
0 g (g, Lay_=Pa_ v
oP, 2M, M,T T
where T' is the equilibrium temperature for all systems and v, is the subsys-

tem velocity vector. Returning to the optimization function L in equation (6)
and differentiating and setting to zero gives

Vq
—— b =0
T+a+ xXr

or
Vo =u+ N X1,

where u = T'a and 2 = Tb are the same for all subsystems. This equation
has the interpretation that in equilibrium the total system must move as a solid
body with velocity w and angular velocity €2. When not in equilibrium this
need not be the case of course.

Now an interesting question arises regarding temperature since it is the
derivative of entropy with respect to (internal) energy. Does it always have
the same sign? In all classical systems of practical interest the temperature
is non-negative however it is possible to construct certain quantum systems in
which a maximum energy occurs for fewer microstates than for a lower energy.
These results are to date however somewhat controversial.



