
Atmospheri
 Dynami
sLe
ture 8: Linearization Part 3 (Baro
lini
 Instability)1 Ba
kgroundIn the previous two Le
tures we dis
ussed linearization about a state of rest.However it is 
lear from the dis
ussion of the thermal wind relation andthe observed jet streams that su
h a linearization is not appropriate for themid-latitudes. In parti
ular we saw that geostrophy plus the radiative for
-ing demands both verti
al and horizontal shears in the mean state of theatmosphere. Su
h features are well known from �uid dynami
s to indu
eturbulen
e and the atmosphere is no di�erent in that respe
t. It turns out(for reasons that are not yet 
ompletely understood) that linearization is avery useful tool in understanding the turbulen
e observed. This turbulen
eis essentially what is 
ommonly thought of as weather.2 Two level modelMany of the important features of the linearization we seek 
an be obtainedby 
onsidering the atmosphere as a two verti
al level system by whi
h wemean that verti
al derivatives are repla
ed by appropriate �nite di�eren
eapproximations. Consider the quasi-geostrophi
 equations in pressure 
oor-dinates (Le
ture 5) and de�ne the stream fun
tion as
ψ ≡ 1

f0

Φthen the vorti
ity equation derived in Le
ture 5 
an be rewritten as
∂∇2ψ

∂t
+ ug � ∇(∇2ψ) + βψx = f0ωp (1)where the geostrophi
 relations are

ug = −ψy
vg = +ψx1



Figure 1: Verti
al levels for two level modeland this �ow is along the 
ontours of the stream fun
tion. The tempera-ture equation when 
ombined with the hydrostati
 relation gives
∂

∂t

(

∂ψ

∂p

)

+ ug � ∇
(

∂ψ

∂p

)

= − σ

f0

ω (2)where σ = R
p
S(p) i.e. is related to the mean stati
 stability of the at-mosphere. To set up the two level model we evaluate the stream fun
tionand verti
al velo
ity at the levels shown in Figure 1. . As an approximationwe set ω4 = 0 1. Using the obvious dis
retization of verti
al derivatives inequations (1) and (2) we obtain the three equations

∂∇2ψ1

∂t
+ u1 � ∇(∇2ψ1) + β ∂ψ1

∂x
= f0

δp
ω2

∂∇2ψ3

∂t
+ u3 � ∇(∇2ψ3) + β ∂ψ3

∂x
= −f0

δp
ω2

∂
∂t

(ψ1 − ψ3) + 1

2
(u1 + u3) � ∇ (ψ1 − ψ3) = σδp

f0
ω2

(3)where δp = 500mb. This 
onstitutes a 
losed set of equations known as atwo level model.3 Baro
lini
 instability problemWe study now the impli
ations of a verti
ally sheared zonal velo
ity meanstate i.e. the basi
 situation pertaining to the jet stream. We assume there-fore a mean state that is 
onstant horizontally (and purely zonal in velo
ity)1This has the e�e
t in the linearized equations of setting barotropi
 shallow water speedto an in�nite value whi
h is a reasonable assumption when studying slower e�e
ts.2



but not verti
ally. The appropriate mean stream fun
tion for this is
ψ1 = −U1y

ψ3 = −U3yLinearizing equations (3) about this mean state and assuming for sim-pli
ity solutions only dependent on x and t we obtain
(
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(ψ1 + ψ3) = σδp

f0
ω2where Um ≡ 1

2
(U1 + U3) is the verti
ally averaged mean �ow and UT =

1

2
(U1 − U3) is the 
omponent of the mean �ow due to the thermal windrelation and so is 
alled the thermal wind. We 
an de�ne analogous quantitiesfor the stream fun
tion ψm and ψT (whi
h we 
all respe
tively the barotropi
and baro
lini
 stream fun
tion). If we add the �rst two equations we obtain anew equation. Additionally if we subtra
t them and use the third equation toremove ω2 then we get the two equations involving only the stream fun
tion

(

∂
∂t

+ Um
∂
∂x

)

∂2ψm

∂x2 + β ∂ψm

∂x
+ UT

∂
∂x

(

∂2ψT

∂x2

)

= 0
(

∂
∂t

+ Um
∂
∂x

)

(

∂2ψT

∂x2 − 2λ2ψT

)

+ β ∂ψT
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∂2ψm

∂x2 + 2λ2ψm
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= 0where λ2 ≡ f 2
0 /

(

σ (δp)2
). Note the resemblan
e of these equations tothose derived in the previous Le
ture for the Rossby waves. Note howeverhow the non-zero mean state modi�es the form non-trivially. As for that 
asewe seek Fourier solution

ψm = A exp(i(kx− ωt) ψT = B exp(i(kx− ωt) (4)and obtain the following two dispersion equations
ik

[(

ω
k
− Um

)

k2 + β
]

A− ik3UTB = 0
ik

[(

ω
k
− Um

)

(k2 + 2λ2) + β
]

B − ikUT (k2 − 2λ2)A = 0
(5)These equations only have solutions for the Fourier amplitudes A and Bif the determinant of the linear equation here vanishes i.e. if
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This quadrati
 equation 
an be solved for ω/k = c the phase velo
itywith the two solutions
c =

ω

k
= Um − β (k2 + λ2)

k2 (k2 + 2λ2)
±

√
δwith the potentially negative (and interesting) δ given by

δ =
β2λ4

k4 (k2 + 2λ2)2
− U2

T (−k2 + 2λ2)

(k2 + 2λ2)Note that the possibility that δ is negative depends 
riti
ally on the meanthermal wind UT . If δ is indeed negative it follows rather obviously that ex-ponentially growing solutions in time 
an o

ur. If the thermal wind vanishesthen the two solutions for ω are
ω = Umk − βk−1

ω = Umk − βk

k2+2λ2These are the dispersion relations for Rossby waves adve
ted by the mean�ow Um. The se
ond term on the right hand sides is identi
al to the formderived in the previous Le
ture2 with parti
ular 
hoi
es for shallow waterspeeds: the �rst is in�nite (be
ause of the lower boundary 
ondition), these
ond 
lose to that of the �rst baro
lini
 mode. The verti
al stru
ture ofthe �rst 
an be shown to be barotropi
 and the se
ond baro
lini
.In the physi
ally interesting 
ase that UT 6= 0 it is useful to 
onsider whenthe 
riti
al parameter δ = 0 i.e.
β2λ4

k4 (k2 + 2λ2)
= U2

T

(

−k2 + 2λ2
)This gives a 
urve in the (UT , k) plane that separates stable and unstablemodes and is 
alled the neutral 
urve. We 
an solve this equation easily for

k and plot as a fun
tion of the mean thermal wind UT and this is shown inFigure 2.Note that as UT in
reases instability also does and that there is a min-imum value for the unstable region that sele
ts a parti
ular value of k i.e.it sele
ts a parti
ular s
ale. It turns out that this value of k is also when2with l = 0 sin
e we are dealing with solutions 
onstant in the y dire
tion4



Figure 2: The neutral 
urve for the two layer quasi-geostrophi
 model lin-earized about a verti
ally varying mean state.instability is greatest for a given UT . Elementary 
al
ulus shows this o

urswhen
k =

4
√

2λand this 
orresponds to a parti
ular value of c the phase velo
ity. Thelevel at whi
h this mat
hes the mean velo
ity is termed by synopti
ians the�steering� level sin
e the mean �ow at that level appears to be moving thedisturban
e. With realisti
 values for λ the horizontal s
ale 
orresponding tothis most unstable wave is about 4000km whi
h 
orresponds well with theobserved s
ale of weather systems. It is natural to fo
us on the most unstablemodes sin
e they will tend to dominate the total solution given su�
ient time.In general noti
e how the instability region tends to sele
t out a naturalspa
e s
ale and through the dispersion relations a natural time s
ale. Theses
ales 
orrespond well with the observed phenomena. The growth rate of theunstable waves may be shown to a strong monotoni
 fun
tion of the meanthermal wind. For realisti
 
hoi
es for UT many unstable linear modes existi.e. we are high on the plot in Figure 2. In fa
t the minimum unstablemode o

urs when the shear is about 8ms−1 whi
h is well below the typi
alobserved jet stream shear. The time s
ale asso
iated with the growth of the5



Figure 3: Stru
ture of the most unstable mode. The disturban
e moves fromW to E. The dashed 
urve is 500mb temperature perturbation whi
h pre
edesin time the geopotential (solid 
urve).unstable modes 
an of 
ourse be derived from ω and for realisti
 model valuesis about 1 − 2 days whi
h again 
orresponds with storm development in theatmosphere.The solutions for k and ω 
an be resubstituted into equations (5) and then(4) to re
onstru
t the parti
ular horizontal solution at the various verti
allevels. The 
orresponding verti
al velo
ities, temperature (and geopotential)are easily obtained from the linearized quasi-geostrophi
 equations. Thesolutions for the most unstable modes show a very 
hara
teristi
 stru
turewhi
h is sket
hed qualitatively in Figure 3.This wave moves from left to right i.e. from west to east. This is due tothe mean state being so dire
ted. Positive temperature perturbations o

ur�rst and are asso
iated with upward motion (i.e. usually rain) and negativegeopotential (i.e. low pressure at a given height). Positive geopotentialperturbations (high pressure) o

ur later and are asso
iated with downwardmotion (no 
loud) and 
old temperatures. The tilt with height of geopotentialis also a notable (and realisti
) feature of the unstable mode.The reader will re
ognize the above pattern as that often o

urring in a6



mid-latitude storm. Of 
ourse the analysis above is limited sin
e it is linearand the non-linear �saturation� of the above unstable waves has been wellstudied. In general a baro
lini
 life 
y
le has been noted in both models andobservations (see [1℄). Many questions still remain however 
on
erning thefull broad spe
trum non-linear problem whi
h 
onstitutes a very parti
ularturbulen
e 
on�guration.Referen
es[1℄ A.J. Simmons and B.J. Hoskins. The Life Cy
les of Some NonlinearBaro
lini
 Waves. J. Atmos. S
i., 35:414�432, 1978.
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