
Atmospheri DynamisLeture 8: Linearization Part 3 (Barolini Instability)1 BakgroundIn the previous two Letures we disussed linearization about a state of rest.However it is lear from the disussion of the thermal wind relation andthe observed jet streams that suh a linearization is not appropriate for themid-latitudes. In partiular we saw that geostrophy plus the radiative for-ing demands both vertial and horizontal shears in the mean state of theatmosphere. Suh features are well known from �uid dynamis to indueturbulene and the atmosphere is no di�erent in that respet. It turns out(for reasons that are not yet ompletely understood) that linearization is avery useful tool in understanding the turbulene observed. This turbuleneis essentially what is ommonly thought of as weather.2 Two level modelMany of the important features of the linearization we seek an be obtainedby onsidering the atmosphere as a two vertial level system by whih wemean that vertial derivatives are replaed by appropriate �nite di�ereneapproximations. Consider the quasi-geostrophi equations in pressure oor-dinates (Leture 5) and de�ne the stream funtion as
ψ ≡ 1

f0

Φthen the vortiity equation derived in Leture 5 an be rewritten as
∂∇2ψ

∂t
+ ug � ∇(∇2ψ) + βψx = f0ωp (1)where the geostrophi relations are

ug = −ψy
vg = +ψx1



Figure 1: Vertial levels for two level modeland this �ow is along the ontours of the stream funtion. The tempera-ture equation when ombined with the hydrostati relation gives
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S(p) i.e. is related to the mean stati stability of the at-mosphere. To set up the two level model we evaluate the stream funtionand vertial veloity at the levels shown in Figure 1. . As an approximationwe set ω4 = 0 1. Using the obvious disretization of vertial derivatives inequations (1) and (2) we obtain the three equations
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(3)where δp = 500mb. This onstitutes a losed set of equations known as atwo level model.3 Barolini instability problemWe study now the impliations of a vertially sheared zonal veloity meanstate i.e. the basi situation pertaining to the jet stream. We assume there-fore a mean state that is onstant horizontally (and purely zonal in veloity)1This has the e�et in the linearized equations of setting barotropi shallow water speedto an in�nite value whih is a reasonable assumption when studying slower e�ets.2



but not vertially. The appropriate mean stream funtion for this is
ψ1 = −U1y

ψ3 = −U3yLinearizing equations (3) about this mean state and assuming for sim-pliity solutions only dependent on x and t we obtain
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(U1 − U3) is the omponent of the mean �ow due to the thermal windrelation and so is alled the thermal wind. We an de�ne analogous quantitiesfor the stream funtion ψm and ψT (whih we all respetively the barotropiand barolini stream funtion). If we add the �rst two equations we obtain anew equation. Additionally if we subtrat them and use the third equation toremove ω2 then we get the two equations involving only the stream funtion
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). Note the resemblane of these equations tothose derived in the previous Leture for the Rossby waves. Note howeverhow the non-zero mean state modi�es the form non-trivially. As for that asewe seek Fourier solution

ψm = A exp(i(kx− ωt) ψT = B exp(i(kx− ωt) (4)and obtain the following two dispersion equations
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(5)These equations only have solutions for the Fourier amplitudes A and Bif the determinant of the linear equation here vanishes i.e. if
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This quadrati equation an be solved for ω/k = c the phase veloitywith the two solutions
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δwith the potentially negative (and interesting) δ given by
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(k2 + 2λ2)Note that the possibility that δ is negative depends ritially on the meanthermal wind UT . If δ is indeed negative it follows rather obviously that ex-ponentially growing solutions in time an our. If the thermal wind vanishesthen the two solutions for ω are
ω = Umk − βk−1
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k2+2λ2These are the dispersion relations for Rossby waves adveted by the mean�ow Um. The seond term on the right hand sides is idential to the formderived in the previous Leture2 with partiular hoies for shallow waterspeeds: the �rst is in�nite (beause of the lower boundary ondition), theseond lose to that of the �rst barolini mode. The vertial struture ofthe �rst an be shown to be barotropi and the seond barolini.In the physially interesting ase that UT 6= 0 it is useful to onsider whenthe ritial parameter δ = 0 i.e.
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)This gives a urve in the (UT , k) plane that separates stable and unstablemodes and is alled the neutral urve. We an solve this equation easily for

k and plot as a funtion of the mean thermal wind UT and this is shown inFigure 2.Note that as UT inreases instability also does and that there is a min-imum value for the unstable region that selets a partiular value of k i.e.it selets a partiular sale. It turns out that this value of k is also when2with l = 0 sine we are dealing with solutions onstant in the y diretion4



Figure 2: The neutral urve for the two layer quasi-geostrophi model lin-earized about a vertially varying mean state.instability is greatest for a given UT . Elementary alulus shows this ourswhen
k =

4
√

2λand this orresponds to a partiular value of c the phase veloity. Thelevel at whih this mathes the mean veloity is termed by synoptiians the�steering� level sine the mean �ow at that level appears to be moving thedisturbane. With realisti values for λ the horizontal sale orresponding tothis most unstable wave is about 4000km whih orresponds well with theobserved sale of weather systems. It is natural to fous on the most unstablemodes sine they will tend to dominate the total solution given su�ient time.In general notie how the instability region tends to selet out a naturalspae sale and through the dispersion relations a natural time sale. Thesesales orrespond well with the observed phenomena. The growth rate of theunstable waves may be shown to a strong monotoni funtion of the meanthermal wind. For realisti hoies for UT many unstable linear modes existi.e. we are high on the plot in Figure 2. In fat the minimum unstablemode ours when the shear is about 8ms−1 whih is well below the typialobserved jet stream shear. The time sale assoiated with the growth of the5



Figure 3: Struture of the most unstable mode. The disturbane moves fromW to E. The dashed urve is 500mb temperature perturbation whih preedesin time the geopotential (solid urve).unstable modes an of ourse be derived from ω and for realisti model valuesis about 1 − 2 days whih again orresponds with storm development in theatmosphere.The solutions for k and ω an be resubstituted into equations (5) and then(4) to reonstrut the partiular horizontal solution at the various vertiallevels. The orresponding vertial veloities, temperature (and geopotential)are easily obtained from the linearized quasi-geostrophi equations. Thesolutions for the most unstable modes show a very harateristi struturewhih is skethed qualitatively in Figure 3.This wave moves from left to right i.e. from west to east. This is due tothe mean state being so direted. Positive temperature perturbations our�rst and are assoiated with upward motion (i.e. usually rain) and negativegeopotential (i.e. low pressure at a given height). Positive geopotentialperturbations (high pressure) our later and are assoiated with downwardmotion (no loud) and old temperatures. The tilt with height of geopotentialis also a notable (and realisti) feature of the unstable mode.The reader will reognize the above pattern as that often ourring in a6



mid-latitude storm. Of ourse the analysis above is limited sine it is linearand the non-linear �saturation� of the above unstable waves has been wellstudied. In general a barolini life yle has been noted in both models andobservations (see [1℄). Many questions still remain however onerning thefull broad spetrum non-linear problem whih onstitutes a very partiularturbulene on�guration.Referenes[1℄ A.J. Simmons and B.J. Hoskins. The Life Cyles of Some NonlinearBarolini Waves. J. Atmos. Si., 35:414�432, 1978.
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