Atmospheric Dynamics

Lecture 8: Linearization Part 3 (Baroclinic Instability)

1 Background

In the previous two Lectures we discussed linearization about a state of rest.
However it is clear from the discussion of the thermal wind relation and
the observed jet streams that such a linearization is not appropriate for the
mid-latitudes. In particular we saw that geostrophy plus the radiative forc-
ing demands both vertical and horizontal shears in the mean state of the
atmosphere. Such features are well known from fluid dynamics to induce
turbulence and the atmosphere is no different in that respect. It turns out
(for reasons that are not yet completely understood) that linearization is a
very useful tool in understanding the turbulence observed. This turbulence
is essentially what is commonly thought of as weather.

2 Two level model

Many of the important features of the linearization we seek can be obtained
by considering the atmosphere as a two vertical level system by which we
mean that vertical derivatives are replaced by appropriate finite difference
approximations. Consider the quasi-geostrophic equations in pressure coor-
dinates (Lecture 5) and define the stream function as
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then the vorticity equation derived in Lecture 5 can be rewritten as
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where the geostrophic relations are
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Figure 1: Vertical levels for two level model

and this flow is along the contours of the stream function. The tempera-
ture equation when combined with the hydrostatic relation gives
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where 0 = %g(p) i.e. is related to the mean static stability of the at-
mosphere. To set up the two level model we evaluate the stream function
and vertical velocity at the levels shown in Figure 1. . As an approximation
we set wy; = 0 . Using the obvious discretization of vertical derivatives in
equations (1) and (2) we obtain the three equations
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where dp = 500mb. This constitutes a closed set of equations known as a
two level model.

3 Baroclinic instability problem

We study now the implications of a vertically sheared zonal velocity mean
state i.e. the basic situation pertaining to the jet stream. We assume there-
fore a mean state that is constant horizontally (and purely zonal in velocity)

! This has the effect in the linearized equations of setting barotropic shallow water speed
to an infinite value which is a reasonable assumption when studying slower effects.



but not vertically. The appropriate mean stream function for this is

Linearizing equations (3) about this mean state and assuming for sim-
plicity solutions only dependent on x and ¢ we obtain
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where U, = % (U1 + Us) is the vertically averaged mean flow and Ur =
% (U; — Us) is the component of the mean flow due to the thermal wind
relation and so is called the thermal wind. We can define analogous quantities
for the stream function 1, and ¢ (which we call respectively the barotropic
and baroclinic stream function). If we add the first two equations we obtain a
new equation. Additionally if we subtract them and use the third equation to
remove wo then we get the two equations involving only the stream function
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where A2 = f2/ (o ((5]))2). Note the resemblance of these equations to
those derived in the previous Lecture for the Rossby waves. Note however
how the non-zero mean state modifies the form non-trivially. As for that case
we seek Fourier solution

Um = Aexp(i(kr — wt) Wy = Bexp(i(kx — wt) (4)
and obtain the following two dispersion equations
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These equations only have solutions for the Fourier amplitudes A and B
if the determinant of the linear equation here vanishes i.e. if

(W/k = Upn)? K (K 4+ 2X3) 42 (w/k — Up) B (K* + X))+ [ + UZE* (20* — k%]

3

=0



This quadratic equation can be solved for w/k = ¢ the phase velocity
with the two solutions
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with the potentially negative (and interesting) 0 given by
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Note that the possibility that J is negative depends critically on the mean
thermal wind Ur. If § is indeed negative it follows rather obviously that ex-
ponentially growing solutions in time can occur. If the thermal wind vanishes
then the two solutions for w are

w=Upk — Bk
w=Unk — k?igv

These are the dispersion relations for Rossby waves advected by the mean
flow U,,. The second term on the right hand sides is identical to the form
derived in the previous Lecture? with particular choices for shallow water
speeds: the first is infinite (because of the lower boundary condition), the
second close to that of the first baroclinic mode. The vertical structure of
the first can be shown to be barotropic and the second baroclinic.

In the physically interesting case that Ur # 0 it is useful to consider when
the critical parameter 0 = 0 i.e.
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This gives a curve in the (Ur, k) plane that separates stable and unstable
modes and is called the neutral curve. We can solve this equation easily for
k and plot as a function of the mean thermal wind Uy and this is shown in
Figure 2.

Note that as Ur increases instability also does and that there is a min-
imum value for the unstable region that selects a particular value of k i.e.
it selects a particular scale. It turns out that this value of k is also when

2with [ = 0 since we are dealing with solutions constant in the y direction
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Figure 2: The neutral curve for the two layer quasi-geostrophic model lin-
earized about a vertically varying mean state.

instability is greatest for a given Ur. Elementary calculus shows this occurs

when
k =2\

and this corresponds to a particular value of ¢ the phase velocity. The
level at which this matches the mean velocity is termed by synopticians the
“steering” level since the mean flow at that level appears to be moving the
disturbance. With realistic values for A the horizontal scale corresponding to
this most unstable wave is about 4000km which corresponds well with the
observed scale of weather systems. It is natural to focus on the most unstable
modes since they will tend to dominate the total solution given sufficient time.
In general notice how the instability region tends to select out a natural
space scale and through the dispersion relations a natural time scale. These
scales correspond well with the observed phenomena. The growth rate of the
unstable waves may be shown to a strong monotonic function of the mean
thermal wind. For realistic choices for Ur many unstable linear modes exist
i.e. we are high on the plot in Figure 2. In fact the minimum unstable
mode occurs when the shear is about 8ms~! which is well below the typical
observed jet stream shear. The time scale associated with the growth of the
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Figure 3: Structure of the most unstable mode. The disturbance moves from
W to E. The dashed curve is 500mb temperature perturbation which precedes
in time the geopotential (solid curve).

unstable modes can of course be derived from w and for realistic model values
is about 1 — 2 days which again corresponds with storm development in the
atmosphere.

The solutions for k£ and w can be resubstituted into equations (5) and then
(4) to reconstruct the particular horizontal solution at the various vertical
levels. The corresponding vertical velocities, temperature (and geopotential)
are easily obtained from the linearized quasi-geostrophic equations. The
solutions for the most unstable modes show a very characteristic structure
which is sketched qualitatively in Figure 3.

This wave moves from left to right i.e. from west to east. This is due to
the mean state being so directed. Positive temperature perturbations occur
first and are associated with upward motion (i.e. usually rain) and negative
geopotential (i.e. low pressure at a given height). Positive geopotential
perturbations (high pressure) occur later and are associated with downward
motion (no cloud) and cold temperatures. The tilt with height of geopotential
is also a notable (and realistic) feature of the unstable mode.

The reader will recognize the above pattern as that often occurring in a



mid-latitude storm. Of course the analysis above is limited since it is linear
and the non-linear “saturation” of the above unstable waves has been well
studied. In general a baroclinic life cycle has been noted in both models and
observations (see [1]). Many questions still remain however concerning the
full broad spectrum non-linear problem which constitutes a very particular
turbulence configuration.
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