
Atmospheri
 Dynami
sLe
ture 7: Linearization Part 21 Linear shallow water equationsIn the previous Le
ture we dis
ussed linearization about a state of rest andfound that 
onvenient solutions 
ould be obtained using a seperation of vari-ables between the verti
al and the horizontal plus time. The latter �elds givethen the linear shallow water equations with the shallow water speeds beinga fun
tion of the verti
al Strurm Liouville system eigenvalues. These equa-tions have three di�erent kinds of solutions: Gravity/Poin
are waves, Rossbywaves and Kelvin waves. In the mid-latitudes only the �rst two are impor-tant while the latter is often important in the equatorial region. We dis
usshere the former two and defer a general dis
ussion until a later Le
ture.To keep the dis
ussion general we 
onsider the 
ompressible equations inpressure 
oordinates dis
ussed in the �rst se
tion of Le
ture 5. We 
hoosethe following separation of variables:
−→u = û(p)

−→

U (x, y, t)

Φ = Φ̂(p)η(x, y, t)

T = T̂ (p)T̃ (x, y, t)

ω = ĥ(p)w̃(x, y, t)

(1)Substitution into the full equations gives us the verti
al equations
û = Φ̂/g

Φ̂p = −
R
p
T̂

ĥp = û/H0

T̂ = S(p)ĥand a �nal se
ond order PDE of
ĥpp +

RS(p)

pc2
ĥ = 0with c2 = gH0. 1



The shallow water equations are identi
al to the in
ompressible 
ase i.e.
Ut − fV = −hx

Vt + fU = −hy

ht + c2(Ux + Vy) = 0where h = gη.The so 
alled Poin
are/gravity waves 
an be obtained by setting the Cori-olis parameter f = f0 a 
onstant. Add the x derivative of the �rst equationand the y derivative of the se
ond and take the t derivative of the resultingequation; then use the di�eren
e of the y derivative of the �rst and the xderivative of the se
ond with the third equation and 
ombine this with se
ond
t derivative of the third equation to obtain

httt − c2(hxx + hyy)t + f 2

0
ht = 0Consider now a general wave like solution of the form

h = h0 exp(i(ωt − kx − ly) (2)we obtain the dispersion relation
ω(ω2

− c2(k2 + l2) + f 2

0
) = 0The solution with zero frequen
y 
orresponds to a stationary geostrophi
�ow. The other solutions give the Poin
are waves

ω2 = c2(k2 + l2) + f 2

0These are hyperboloids in the ω, k, l spa
e and a minimum frequen
y of f0o

urs when the solutions have zero wavenumbers in the x and y dire
tionsi.e. they are 
onstant. This 
orresponds with a period of a half a day. Allother gravity waves have a shorter period and a group velo
ity of c the so-
alled shallow water speed.2 Rossby wavesThere are other lower frequen
y wave solutions of the shallow water equationsthat are a 
onsequen
e of the variation of the Coriolis parameter. An easyway to obtain these solutions is via the quasi-gesotrophi
 equations from2



Figure 1: Dispersion diagram for Rossby waves. The plot is for zonalwavenumber frequen
y spa
e.Le
ture 5. The prognosti
 momentum equations (6) 
an be 
ombined withthe geostrophi
 relations (5) to give the two equations
f 2

0
va = −Φyt − βyΦx

f 2

0
ua = −Φxt + βyΦyTaking the divergen
e of these two equations gives

∂ω

∂p
=

1

f 2

0

[Φxxt + Φyyt + βΦx]If we now perform the verti
al separation of variables from the previousse
tion we obtain for the horizontal part of the geopotential
1

c2
ηt =

1

f 2

0

[ηxxt + ηyyt + βηx]Substituting the Fourier ansatz (2) gives the Rossby wave dispersion re-lation
ω =

−βk

k2 + l2 +
f2

0

c2Noti
e the dependen
e of this relation on the shallow water speed whi
hindi
ates that there are di�erent waves for the di�erent verti
al eignemodes.A plot of this Rossby wave dispersion relation in the ω, k plane is shown inFigure 1. 3



Noti
e that for Rossby waves of small wavenumber (long wavelength)the group propagation is westward while the large wavenumber (short wave-length) waves propagate to the east. The stationary point o

urs at
k2 = l2 +

f 2

0

c2The small wavenumber approximate dispersion relation is
ω = −

βc2

f 2

0

kwhile the approximate dispersion relation for large wavenumbers is simply
ω = −

β

kThe peak frequen
y for typi
al values of c and f0 is 
onsiderably smallerthan the minimum frequen
y for gravity waves showing typi
ally a ratherlarge spe
tral gap. Rossby waves are thus ex
ited by low frequen
y for
ing inthe atmosphere (order days or longer) while gravity waves are for
ed by highfrequen
y events (period order hours). If we de�ne the distan
e parameter
a ≡

1√
l2 +

f2

0

c2then the maximum frequen
y is easily shown to be ωmax = βa/2 when
k = 1/a. Noti
e that this distan
e parameter whi
h is sometimes 
alled theRossby radius de
reases with latitude and in
reases with the shallow waterspeed c.The Rossby waves are present in the full shallow water equations alongwith the gravity waves (more detail in a later le
ture). The quasi-geostrophi
approximation therefore has the e�e
t of �ltering out the gravity waves andretaining the slowly varying distruban
es. This was of great value in the earlydays of weather predi
tion when gravity waves were a large problem in initial
onditions sin
e these were less than ideal. In the presen
e of non-zero mean�ows su
h as the jetstream the analysis above is of 
ourse modi�ed. The �rstorder e�e
t is simply to shift the waves group velo
ity by the ba
kground�ow. For low frequen
y waves this 
an mean that their group velo
ity whi
his westward for no ba
kground �ow 
an be
ome eastward. Many observationsin both atmosphere and o
ean have yielded strong eviden
e for Rossby waves.4



3 Thermal wind relationThe spheri
al nature of the Earth implies that the amount of solar radiationimpinging on the surfa
e is essentially proportional to the 
osine of latitudeand hen
e de
reases sharply from equator to pole. This basi
 radiative e�e
timplies strong meridional gradients of temperature at least 
lose to the sur-fa
e. The gradient is 
arried into the interior of the atmosphere by a varietyof adve
tion and mixing pro
esses. The geostrophi
 balan
e then impliesthat there must be a 
onsequent wind �ow. If we 
ombine the hydrostati
equation with the geostrophi
 balan
e 
ondition (Le
ture 5 �rst se
tion) forzonal velo
ity we obtain in pressure 
oordinates
(ug)p =

RTy

pwhi
h is known as the thermal wind relation sin
e it implies that a merid-ional temperature gradient is balan
ed by a verti
al zonal wind gradient.Sin
e the wind vanishes at the surfa
e this implies a zonal �ow aloft. This isknown as the jetstream. Figure 2 shows the northern winter zonally averagedtemperature and wind. Noti
e that the meridional temperature gradient isgreatest near the surfa
e 
onsistent with its radiative origin. Note also thatit reverses in the stratosphere and this means that the thermal wind peaksat the top of the troposphere. It also peaks in the mid-latitudes sin
e this iswhere the equator to pole temperature gradient naturally peaks.
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Figure 2: The northern winter zonally averaged zonal wind (top panel) andtemperature (lower panel). Noti
e the a

ura
y of the thermal wind relation.Units are meters per se
ond and Kelvin respe
tively.
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