
Atmospheri DynamisLeture 7: Linearization Part 21 Linear shallow water equationsIn the previous Leture we disussed linearization about a state of rest andfound that onvenient solutions ould be obtained using a seperation of vari-ables between the vertial and the horizontal plus time. The latter �elds givethen the linear shallow water equations with the shallow water speeds beinga funtion of the vertial Strurm Liouville system eigenvalues. These equa-tions have three di�erent kinds of solutions: Gravity/Poinare waves, Rossbywaves and Kelvin waves. In the mid-latitudes only the �rst two are impor-tant while the latter is often important in the equatorial region. We disusshere the former two and defer a general disussion until a later Leture.To keep the disussion general we onsider the ompressible equations inpressure oordinates disussed in the �rst setion of Leture 5. We hoosethe following separation of variables:
−→u = û(p)

−→

U (x, y, t)

Φ = Φ̂(p)η(x, y, t)

T = T̂ (p)T̃ (x, y, t)

ω = ĥ(p)w̃(x, y, t)

(1)Substitution into the full equations gives us the vertial equations
û = Φ̂/g

Φ̂p = −
R
p
T̂

ĥp = û/H0

T̂ = S(p)ĥand a �nal seond order PDE of
ĥpp +

RS(p)

pc2
ĥ = 0with c2 = gH0. 1



The shallow water equations are idential to the inompressible ase i.e.
Ut − fV = −hx

Vt + fU = −hy

ht + c2(Ux + Vy) = 0where h = gη.The so alled Poinare/gravity waves an be obtained by setting the Cori-olis parameter f = f0 a onstant. Add the x derivative of the �rst equationand the y derivative of the seond and take the t derivative of the resultingequation; then use the di�erene of the y derivative of the �rst and the xderivative of the seond with the third equation and ombine this with seond
t derivative of the third equation to obtain

httt − c2(hxx + hyy)t + f 2

0
ht = 0Consider now a general wave like solution of the form

h = h0 exp(i(ωt − kx − ly) (2)we obtain the dispersion relation
ω(ω2

− c2(k2 + l2) + f 2

0
) = 0The solution with zero frequeny orresponds to a stationary geostrophi�ow. The other solutions give the Poinare waves

ω2 = c2(k2 + l2) + f 2

0These are hyperboloids in the ω, k, l spae and a minimum frequeny of f0ours when the solutions have zero wavenumbers in the x and y diretionsi.e. they are onstant. This orresponds with a period of a half a day. Allother gravity waves have a shorter period and a group veloity of c the so-alled shallow water speed.2 Rossby wavesThere are other lower frequeny wave solutions of the shallow water equationsthat are a onsequene of the variation of the Coriolis parameter. An easyway to obtain these solutions is via the quasi-gesotrophi equations from2



Figure 1: Dispersion diagram for Rossby waves. The plot is for zonalwavenumber frequeny spae.Leture 5. The prognosti momentum equations (6) an be ombined withthe geostrophi relations (5) to give the two equations
f 2

0
va = −Φyt − βyΦx

f 2

0
ua = −Φxt + βyΦyTaking the divergene of these two equations gives

∂ω

∂p
=

1

f 2

0

[Φxxt + Φyyt + βΦx]If we now perform the vertial separation of variables from the previoussetion we obtain for the horizontal part of the geopotential
1

c2
ηt =

1

f 2

0

[ηxxt + ηyyt + βηx]Substituting the Fourier ansatz (2) gives the Rossby wave dispersion re-lation
ω =

−βk

k2 + l2 +
f2

0

c2Notie the dependene of this relation on the shallow water speed whihindiates that there are di�erent waves for the di�erent vertial eignemodes.A plot of this Rossby wave dispersion relation in the ω, k plane is shown inFigure 1. 3



Notie that for Rossby waves of small wavenumber (long wavelength)the group propagation is westward while the large wavenumber (short wave-length) waves propagate to the east. The stationary point ours at
k2 = l2 +

f 2

0

c2The small wavenumber approximate dispersion relation is
ω = −

βc2

f 2

0

kwhile the approximate dispersion relation for large wavenumbers is simply
ω = −

β

kThe peak frequeny for typial values of c and f0 is onsiderably smallerthan the minimum frequeny for gravity waves showing typially a ratherlarge spetral gap. Rossby waves are thus exited by low frequeny foring inthe atmosphere (order days or longer) while gravity waves are fored by highfrequeny events (period order hours). If we de�ne the distane parameter
a ≡

1√
l2 +

f2

0

c2then the maximum frequeny is easily shown to be ωmax = βa/2 when
k = 1/a. Notie that this distane parameter whih is sometimes alled theRossby radius dereases with latitude and inreases with the shallow waterspeed c.The Rossby waves are present in the full shallow water equations alongwith the gravity waves (more detail in a later leture). The quasi-geostrophiapproximation therefore has the e�et of �ltering out the gravity waves andretaining the slowly varying distrubanes. This was of great value in the earlydays of weather predition when gravity waves were a large problem in initialonditions sine these were less than ideal. In the presene of non-zero mean�ows suh as the jetstream the analysis above is of ourse modi�ed. The �rstorder e�et is simply to shift the waves group veloity by the bakground�ow. For low frequeny waves this an mean that their group veloity whihis westward for no bakground �ow an beome eastward. Many observationsin both atmosphere and oean have yielded strong evidene for Rossby waves.4



3 Thermal wind relationThe spherial nature of the Earth implies that the amount of solar radiationimpinging on the surfae is essentially proportional to the osine of latitudeand hene dereases sharply from equator to pole. This basi radiative e�etimplies strong meridional gradients of temperature at least lose to the sur-fae. The gradient is arried into the interior of the atmosphere by a varietyof advetion and mixing proesses. The geostrophi balane then impliesthat there must be a onsequent wind �ow. If we ombine the hydrostatiequation with the geostrophi balane ondition (Leture 5 �rst setion) forzonal veloity we obtain in pressure oordinates
(ug)p =

RTy

pwhih is known as the thermal wind relation sine it implies that a merid-ional temperature gradient is balaned by a vertial zonal wind gradient.Sine the wind vanishes at the surfae this implies a zonal �ow aloft. This isknown as the jetstream. Figure 2 shows the northern winter zonally averagedtemperature and wind. Notie that the meridional temperature gradient isgreatest near the surfae onsistent with its radiative origin. Note also thatit reverses in the stratosphere and this means that the thermal wind peaksat the top of the troposphere. It also peaks in the mid-latitudes sine this iswhere the equator to pole temperature gradient naturally peaks.
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Figure 2: The northern winter zonally averaged zonal wind (top panel) andtemperature (lower panel). Notie the auray of the thermal wind relation.Units are meters per seond and Kelvin respetively.
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