
Atmospheri DynamisLeture 6: Linearization Part 11 General oneptsThe primitive equations are su�iently non-linear that analytial solutionsare very di�ult to obtain exept in speial ases. A general approah tothis has been the extensive use of numerial models. This is learly howevernot a general theoretial approah and has rather the �avour of experimentalphysis. A ommon approah to this di�ulty has been linearization abouta variety of mean states. The solutions of the resulting multi-omponentequations are wave-like disturbanes whih may grow, deay or remain atonstant amplitude depending on what the mean state is and what dissipationexists in the linearized equations. When the disturbanes grow we refer to theanalysis as linear instability theory while in the other ase one often refersto the study as linear wave analysis. A partiularly simple and revealingstarting point for linearization analysis is the ase that the mean state is atrest.2 Linearization about a state of restPartiularly useful approximate solutions of the primitive equations an beobtained by linearizing them about a state of rest and assuming that thebakground (mean) vertial density struture is horizontally but not verti-ally uniform. In order to simplify the presentation we shall assume inom-pressibility and hydrostati equilibrium for the present but later onsider howthe general ase pans out. The momentum equations for small perturbationsabout the state of rest are
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(1)where we are using the abbreviations x to indiate distane along irles oflatitude (alled the zonal oordinate), y to indiate distane along longitude1



irles (alled the meridional oordinate) and z is the vertial oordinatewhih is perpendiular to geopotential surfaes. The Coriolis parameter f is
2Ω sinϕ and ρ0 = ρ0(z) is the density pro�le. The equation of ontinuity inthe inompressible ase is
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= 0 (2)If we assume that there is no soures of heat and moisture then theinompressible version of the equation of state implies that dρ
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= 0 whihwhen linearized beomes
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= 0 (3)3 Separation of Variables and the vertial Sturm-Liouville equationsThese �ve equations have the �ve unknowns (u, v, w, p, ρ) and general so-lutions are possible. Those of interest to us are separable in the vertialdiretion. We hoose the following separation for the �ve variables
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p = p̂(z)η(x, y, t)
ρ = ρ̂(z)υ(x, y, t)

w = ĥ(z)w̃(x, y, t)where for reasons that will beome learer later we assume that û and
ĥ have the dimensions of length whereas p̂ and ρ̂ have their ordinary units(implying, of ourse, that the horizontal dependent omponents are dimen-sionless). The vertial equations an now be dedued up to a separationonstant from the linearized set above. We obtain the four equations for thevertial part of the solutions:
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(4)where the fator g has been inluded in the �rst equation for dimensionalonsisteny and H0 is the separation onstant whih has dimension of length.2



Combining the �rst and third equations and the seond and fourth reduesthis to
gH0ĥz = p̂/ρ0

p̂z = −g (ρ0)z ĥ
(5)and this is easily ondensed further to
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)1/2 is termed the Brunt-Vaisala frequeny andmeasures the stability of the bakground strati�ation. Note that is alwaysreal if the density pro�le is stable. Parels of �uid displaed within a densitystrati�ation will tend to osillate at this frequeny due to buoyany e�ets.The separation onstant has been �renamed� c2e ≡ gH0 where ce is referred toas shallow water speed for reasons that will beome learer later. The reasonfor assuming that c2e is positive is beause the operator H = −1

ρ0N2∂zρ0∂z mayeasily be shown to be positive providing that the strati�ation is stable. Thelower boundary ondition is that the vertial veloity vanishes and so
ĥ(0) = 0 (7)Equations (6) and (7) together with the assumption that N > 0 form a(semi-in�nite) Sturm-Liouville eigensystem. The mathematial literature onsuh systems is extensive and the eigenvalues c2e an be shown to be positiveand the spetrum generally has disrete and ontinuous parts. The disreteportion is generally of greatest physial interest. The eigenvetors in thissystem are alled the normal, vertial or barolini/barotropi modes. Themode with the greatest eigenvalue and the simplest (one signed) vertialstruture for its eigenvetor is the so-alled barotropi mode whih has ashallow water speed of around 200ms−1. The other modes are alled thebarolini modes and have more omplex vertial strutures. For the observedstrati�ations they have smaller shallow water speeds (the �rst barolinimode has a typial shallow water speed of around 50ms−1). Beause thesystem here is Sturm-Liouville, the vertial modes satisfy an orthogonalityondition and are omplete in the sense that an arbitrary solution may bedeomposed into a unique linear ombination of vertial modes. Barolinimodes play an important role in the understanding of tropial dynamis whilebarotropi modes are of greater importane in the mid-latitudes.3



4 The linear shallow water equationsCorresponding to the four equations in the vertial (4) there are a set ofequations governing the horizontal �ow
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(8)The last equality here oming from the hydrostati equation. The thirdand fourth equations here an be ombined and a new variable h ≡ gηintrodued. The resulting equations
Ut − fV = −hx
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ht + c2n(Ux + Vy) = 0
(9)are ommonly referred to as the linear shallow water equations. We shallonsider their solution further in the next Leture however it is worth exam-ining here the solutions whih our when the Coriolis term is dropped asthese have wide appliability in atmospheri �ows partiularly and illustratesimply some important dynamial properties. The equations in this ase areeasily redued to one onstant oe�ient linear PDE for h. The x derivativeof the �rst equation; the y derivative of the seond and the t derivative ofthe third are all ombined to obtain

htt = c2n(hxx + hyy) (10)Consider now a general wave like solution of the form
h = h0 exp(i(ωt− kx− ly)Substitution into (10) gives the wave dispersion relation

ω2 = c2n(k2 + l2)Waves with this dispersion relation (or approximately) are alled gravitywaves and their group veloity is given by
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whih has magnitude equal to the shallow water speed for the partiularvertial mode they are derived from. The diretion of propagation is pref-erentially in the diretion of greatest wavenumber or smallest wavelength.Gravity waves are often seen in the atmosphere and are generated by rapidlyvarying foring suh as onvetive systems and �ow over topography.5 Generalization to a ompressible �uidThere is little inherent di�ulty in generalizing our inompressible derivationto the ompressible ase and little of great additional qualitative interest isrevealed. It is onvenient in this ase to work with pressure vertial oordi-nates and use the equations derived in the �rst setion of the last Leture.The mathematis of the derivation of the Sturm Liouville system is essen-tially idential in form to the inompressible ase disussed above (exerisefor interested students). The only ompliation onerns boundary ondi-tions. The vertial domain is mapped from semi-in�nite to �nite by the useof pressure. The boundary ondition at p = 0 is rather obvious (ω = 0)but the boundary ondition at the bottom of the atmosphere is a little lessobvious but an be shown to be
ω = ρ0(pl)
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∂twhere the maximum pressure is pl. The �nite domain implies a fullydisrete spetrum for the positive eigenvalues of the problem and they arerelated to the inompressible solutions in a rather lear way albeit with mod-i�ed values. The horizontal equations remain idential i.e. they are theshallow water equations.6 Other linearizations of the equationsWe onsider �rst some basi onepts in dynamial systems theory. A general(unfored) linearized dynamial system may be written as
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= Aψ (11)where the vetor ψ spei�es the state of the system and the operator

A governs the time evolution. The eigenvetors of A are often referred to5



as the normal modes and the orresponding omplex eigenvalues determinethe growth/deay and osillatory frequeny of these modes. In onservativedynamial systems A satis�es the anti-hermitian property1
A = −A∗where the star indiates the Hermitian onjugate. This relation impliesthat it has purely imaginary eigenvalues2 whih means that the normal modesosillate with onstant amplitude. This an be shown also by de�ning the so-alled propagator U(t′, t) whih takes a state vetor at a time t and transformsit to the appropriate state vetor at time t′. It is easily demonstrated bydisretizing (11) and iterating that

U(t′, t) = exp((t′ − t)A)from whih it is easily demonstrated that if A is antihermitian then U(t′, t)is orthogonal whih implies that it preserves the norm of the state vetors.The shallow water equations ontrol the dynamis of solutions obtainedby linearizing the primitive equations about a state of rest and we an writethese in the matrix form
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where for onveniene we have �non-dimensionalized� the equations usingthe shallow water speed. Now as is well known (and an be shown intuitivelyby disretization) the partial di�erential operators ∂

∂x
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are antiher-mitian and so it follows easily that the operator A for the shallow waterequations is also. Thus these equations have purely osillatory solutions andthe system is onservative.If the equations are linearized about a state of non-rest then, in general,the operator A is no longer antihermitian. An obvious example is a lin-earization about a linearly varying zonal veloity U. If we assume that thisvariation ours in the meridional diretion then
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1One may need to transform state variables to make this apparent.2As should be well known, Hermitean operators have real eigenvalues6



In this ase A is obviously not antihermitian and in fat for U y large enoughthere exist growing normal modes. This is ommonly referred to as barotropiinstability and ours frequently in many situations in the atmosphere.
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