
Atmospheri
 Dynami
sLe
ture 6: Linearization Part 11 General 
on
eptsThe primitive equations are su�
iently non-linear that analyti
al solutionsare very di�
ult to obtain ex
ept in spe
ial 
ases. A general approa
h tothis has been the extensive use of numeri
al models. This is 
learly howevernot a general theoreti
al approa
h and has rather the �avour of experimentalphysi
s. A 
ommon approa
h to this di�
ulty has been linearization abouta variety of mean states. The solutions of the resulting multi-
omponentequations are wave-like disturban
es whi
h may grow, de
ay or remain at
onstant amplitude depending on what the mean state is and what dissipationexists in the linearized equations. When the disturban
es grow we refer to theanalysis as linear instability theory while in the other 
ase one often refersto the study as linear wave analysis. A parti
ularly simple and revealingstarting point for linearization analysis is the 
ase that the mean state is atrest.2 Linearization about a state of restParti
ularly useful approximate solutions of the primitive equations 
an beobtained by linearizing them about a state of rest and assuming that theba
kground (mean) verti
al density stru
ture is horizontally but not verti-
ally uniform. In order to simplify the presentation we shall assume in
om-pressibility and hydrostati
 equilibrium for the present but later 
onsider howthe general 
ase pans out. The momentum equations for small perturbationsabout the state of rest are
∂u
∂t

− fv = −
1

ρ0
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∂x
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gρ = −
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(1)where we are using the abbreviations x to indi
ate distan
e along 
ir
les oflatitude (
alled the zonal 
oordinate), y to indi
ate distan
e along longitude1




ir
les (
alled the meridional 
oordinate) and z is the verti
al 
oordinatewhi
h is perpendi
ular to geopotential surfa
es. The Coriolis parameter f is
2Ω sinϕ and ρ0 = ρ0(z) is the density pro�le. The equation of 
ontinuity inthe in
ompressible 
ase is

∂w

∂z
+
∂u

∂x
+
∂v

∂y
= 0 (2)If we assume that there is no sour
es of heat and moisture then thein
ompressible version of the equation of state implies that dρ

dt
= 0 whi
hwhen linearized be
omes

∂ρ

∂t
+ w

∂ρ0

∂z
= 0 (3)3 Separation of Variables and the verti
al Sturm-Liouville equationsThese �ve equations have the �ve unknowns (u, v, w, p, ρ) and general so-lutions are possible. Those of interest to us are separable in the verti
aldire
tion. We 
hoose the following separation for the �ve variables

−→u = û(z)
−→

U (x, y, t)
p = p̂(z)η(x, y, t)
ρ = ρ̂(z)υ(x, y, t)

w = ĥ(z)w̃(x, y, t)where for reasons that will be
ome 
learer later we assume that û and
ĥ have the dimensions of length whereas p̂ and ρ̂ have their ordinary units(implying, of 
ourse, that the horizontal dependent 
omponents are dimen-sionless). The verti
al equations 
an now be dedu
ed up to a separation
onstant from the linearized set above. We obtain the four equations for theverti
al part of the solutions:

ρ0û = p̂/g
gρ̂ = −p̂z

ĥz = û/H0

ρ̂ = (ρ0)z ĥ

(4)where the fa
tor g has been in
luded in the �rst equation for dimensional
onsisten
y and H0 is the separation 
onstant whi
h has dimension of length.2



Combining the �rst and third equations and the se
ond and fourth redu
esthis to
gH0ĥz = p̂/ρ0

p̂z = −g (ρ0)z ĥ
(5)and this is easily 
ondensed further to

1

ρ0

(ρ0ĥz)z +
N2

c2e
ĥ = 0 (6)where N ≡

(
−gρ−1

0 (ρ0)z

)1/2 is termed the Brunt-Vaisala frequen
y andmeasures the stability of the ba
kground strati�
ation. Note that is alwaysreal if the density pro�le is stable. Par
els of �uid displa
ed within a densitystrati�
ation will tend to os
illate at this frequen
y due to buoyan
y e�e
ts.The separation 
onstant has been �renamed� c2e ≡ gH0 where ce is referred toas shallow water speed for reasons that will be
ome 
learer later. The reasonfor assuming that c2e is positive is be
ause the operator H = −1

ρ0N2∂zρ0∂z mayeasily be shown to be positive providing that the strati�
ation is stable. Thelower boundary 
ondition is that the verti
al velo
ity vanishes and so
ĥ(0) = 0 (7)Equations (6) and (7) together with the assumption that N > 0 form a(semi-in�nite) Sturm-Liouville eigensystem. The mathemati
al literature onsu
h systems is extensive and the eigenvalues c2e 
an be shown to be positiveand the spe
trum generally has dis
rete and 
ontinuous parts. The dis
reteportion is generally of greatest physi
al interest. The eigenve
tors in thissystem are 
alled the normal, verti
al or baro
lini
/barotropi
 modes. Themode with the greatest eigenvalue and the simplest (one signed) verti
alstru
ture for its eigenve
tor is the so-
alled barotropi
 mode whi
h has ashallow water speed of around 200ms−1. The other modes are 
alled thebaro
lini
 modes and have more 
omplex verti
al stru
tures. For the observedstrati�
ations they have smaller shallow water speeds (the �rst baro
lini
mode has a typi
al shallow water speed of around 50ms−1). Be
ause thesystem here is Sturm-Liouville, the verti
al modes satisfy an orthogonality
ondition and are 
omplete in the sense that an arbitrary solution may bede
omposed into a unique linear 
ombination of verti
al modes. Baro
lini
modes play an important role in the understanding of tropi
al dynami
s whilebarotropi
 modes are of greater importan
e in the mid-latitudes.3



4 The linear shallow water equationsCorresponding to the four equations in the verti
al (4) there are a set ofequations governing the horizontal �ow
∂U
∂t

− fV = −g ∂η
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∂V
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− fU = −g ∂η
∂y

w̃ = −H0(
∂U
∂x

+ ∂V
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)

w̃ = ∂υ
∂t

= ∂η
∂t

(8)The last equality here 
oming from the hydrostati
 equation. The thirdand fourth equations here 
an be 
ombined and a new variable h ≡ gηintrodu
ed. The resulting equations
Ut − fV = −hx

Vt + fU = −hy

ht + c2n(Ux + Vy) = 0
(9)are 
ommonly referred to as the linear shallow water equations. We shall
onsider their solution further in the next Le
ture however it is worth exam-ining here the solutions whi
h o

ur when the Coriolis term is dropped asthese have wide appli
ability in atmospheri
 �ows parti
ularly and illustratesimply some important dynami
al properties. The equations in this 
ase areeasily redu
ed to one 
onstant 
oe�
ient linear PDE for h. The x derivativeof the �rst equation; the y derivative of the se
ond and the t derivative ofthe third are all 
ombined to obtain

htt = c2n(hxx + hyy) (10)Consider now a general wave like solution of the form
h = h0 exp(i(ωt− kx− ly)Substitution into (10) gives the wave dispersion relation

ω2 = c2n(k2 + l2)Waves with this dispersion relation (or approximately) are 
alled gravitywaves and their group velo
ity is given by
ug = ∂ω

∂k
= c2

n
k√

k2+l2

vg = ∂ω
∂l

= c2
n
l√

k2+l24



whi
h has magnitude equal to the shallow water speed for the parti
ularverti
al mode they are derived from. The dire
tion of propagation is pref-erentially in the dire
tion of greatest wavenumber or smallest wavelength.Gravity waves are often seen in the atmosphere and are generated by rapidlyvarying for
ing su
h as 
onve
tive systems and �ow over topography.5 Generalization to a 
ompressible �uidThere is little inherent di�
ulty in generalizing our in
ompressible derivationto the 
ompressible 
ase and little of great additional qualitative interest isrevealed. It is 
onvenient in this 
ase to work with pressure verti
al 
oordi-nates and use the equations derived in the �rst se
tion of the last Le
ture.The mathemati
s of the derivation of the Sturm Liouville system is essen-tially identi
al in form to the in
ompressible 
ase dis
ussed above (exer
isefor interested students). The only 
ompli
ation 
on
erns boundary 
ondi-tions. The verti
al domain is mapped from semi-in�nite to �nite by the useof pressure. The boundary 
ondition at p = 0 is rather obvious (ω = 0)but the boundary 
ondition at the bottom of the atmosphere is a little lessobvious but 
an be shown to be
ω = ρ0(pl)

∂Φ

∂twhere the maximum pressure is pl. The �nite domain implies a fullydis
rete spe
trum for the positive eigenvalues of the problem and they arerelated to the in
ompressible solutions in a rather 
lear way albeit with mod-i�ed values. The horizontal equations remain identi
al i.e. they are theshallow water equations.6 Other linearizations of the equationsWe 
onsider �rst some basi
 
on
epts in dynami
al systems theory. A general(unfor
ed) linearized dynami
al system may be written as
∂ψ

∂t
= Aψ (11)where the ve
tor ψ spe
i�es the state of the system and the operator

A governs the time evolution. The eigenve
tors of A are often referred to5



as the normal modes and the 
orresponding 
omplex eigenvalues determinethe growth/de
ay and os
illatory frequen
y of these modes. In 
onservativedynami
al systems A satis�es the anti-hermitian property1
A = −A∗where the star indi
ates the Hermitian 
onjugate. This relation impliesthat it has purely imaginary eigenvalues2 whi
h means that the normal modesos
illate with 
onstant amplitude. This 
an be shown also by de�ning the so-
alled propagator U(t′, t) whi
h takes a state ve
tor at a time t and transformsit to the appropriate state ve
tor at time t′. It is easily demonstrated bydis
retizing (11) and iterating that

U(t′, t) = exp((t′ − t)A)from whi
h it is easily demonstrated that if A is antihermitian then U(t′, t)is orthogonal whi
h implies that it preserves the norm of the state ve
tors.The shallow water equations 
ontrol the dynami
s of solutions obtainedby linearizing the primitive equations about a state of rest and we 
an writethese in the matrix form
∂

∂t




U/c
V/c
h/c2


 =




0 f −c ∂
∂x

−f 0 −c ∂
∂y

−c ∂
∂x

−c ∂
∂y

0







U/c
V/c
h/c2


where for 
onvenien
e we have �non-dimensionalized� the equations usingthe shallow water speed. Now as is well known (and 
an be shown intuitivelyby dis
retization) the partial di�erential operators ∂

∂x
and ∂

∂y
are antiher-mitian and so it follows easily that the operator A for the shallow waterequations is also. Thus these equations have purely os
illatory solutions andthe system is 
onservative.If the equations are linearized about a state of non-rest then, in general,the operator A is no longer antihermitian. An obvious example is a lin-earization about a linearly varying zonal velo
ity U. If we assume that thisvariation o

urs in the meridional dire
tion then

A =




−U ∂
∂x

f − U y −c ∂
∂x

−f −U ∂
∂x

−c ∂
∂y

−c ∂
∂x

−c ∂
∂y

0


1One may need to transform state variables to make this apparent.2As should be well known, Hermitean operators have real eigenvalues6



In this 
ase A is obviously not antihermitian and in fa
t for U y large enoughthere exist growing normal modes. This is 
ommonly referred to as barotropi
instability and o

urs frequently in many situations in the atmosphere.
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