Atmospheric Dynamics

Lecture 6: Linearization Part 1

1 General concepts

The primitive equations are sufficiently non-linear that analytical solutions
are very difficult to obtain except in special cases. A general approach to
this has been the extensive use of numerical models. This is clearly however
not a general theoretical approach and has rather the flavour of experimental
physics. A common approach to this difficulty has been linearization about
a variety of mean states. The solutions of the resulting multi-component
equations are wave-like disturbances which may grow, decay or remain at
constant amplitude depending on what the mean state is and what dissipation
exists in the linearized equations. When the disturbances grow we refer to the
analysis as linear instability theory while in the other case one often refers
to the study as linear wave analysis. A particularly simple and revealing
starting point for linearization analysis is the case that the mean state is at
rest.

2 Linearization about a state of rest

Particularly useful approximate solutions of the primitive equations can be
obtained by linearizing them about a state of rest and assuming that the
background (mean) vertical density structure is horizontally but not verti-
cally uniform. In order to simplify the presentation we shall assume incom-
pressibility and hydrostatic equilibrium for the present but later consider how
the general case pans out. The momentum equations for small perturbations
about the state of rest are
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where we are using the abbreviations x to indicate distance along circles of
latitude (called the zonal coordinate), y to indicate distance along longitude



circles (called the meridional coordinate) and z is the vertical coordinate
which is perpendicular to geopotential surfaces. The Coriolis parameter f is
20 sin ¢ and pg = po(z) is the density profile. The equation of continuity in
the incompressible case is
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If we assume that there is no sources of heat and moisture then the
incompressible version of the equation of state implies that dp = 0 which
when linearized becomes
dp dpo
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3 Separation of Variables and the vertical Sturm-
Liouville equations

These five equations have the five unknowns (u,v,w,p,p) and general so-
lutions are possible. Those of interest to us are separable in the vertical
direction. We choose the following separation for the five variables

—

u = u(z)U (z,y,t)
p = pl)n(z,y,1)
p = plRu(,y,t)
w h(z)w(z,y,t)

__ where for reasons that will become clearer later we assume that u and
h have the dimensions of length whereas p and p have their ordinary units
(implying, of course, that the horizontal dependent components are dimen-
sionless). The vertical equations can now be deduced up to a separation
constant from the linearized set above. We obtain the four equations for the
vertical part of the solutions:

poi = plyg
hz = ﬂ/HO (4)
p = (po),h

where the factor g has been included in the first equation for dimensional
consistency and H is the separation constant which has dimension of length.



Combining the first and third equations and the second and fourth reduces
this to
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and this is easily condensed further to
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where N = (—gpgl (po)z)l/2 is termed the Brunt-Vaisala frequency and
measures the stability of the background stratification. Note that is always
real if the density profile is stable. Parcels of fluid displaced within a density
stratification will tend to oscillate at this frequency due to buoyancy effects.
The separation constant has been “renamed” ¢? = gH, where c, is referred to
as shallow water speed for reasons that will become clearer later. The reason
for assuming that ¢? is positive is because the operator H = ;—]@azpoaz may
easily be shown to be positive providing that the stratification is stable. The
lower boundary condition is that the vertical velocity vanishes and so

1(0) =0 (7)

Equations (6) and (7) together with the assumption that N > 0 form a
(semi-infinite) Sturm-Liouville eigensystem. The mathematical literature on
such systems is extensive and the eigenvalues ¢ can be shown to be positive
and the spectrum generally has discrete and continuous parts. The discrete
portion is generally of greatest physical interest. The eigenvectors in this
system are called the normal, vertical or baroclinic/barotropic modes. The
mode with the greatest eigenvalue and the simplest (one signed) vertical
structure for its eigenvector is the so-called barotropic mode which has a
shallow water speed of around 200ms~!. The other modes are called the
baroclinic modes and have more complex vertical structures. For the observed
stratifications they have smaller shallow water speeds (the first baroclinic
mode has a typical shallow water speed of around 50ms~!). Because the
system here is Sturm-Liouville, the vertical modes satisfy an orthogonality
condition and are complete in the sense that an arbitrary solution may be
decomposed into a unique linear combination of vertical modes. Baroclinic
modes play an important role in the understanding of tropical dynamics while
barotropic modes are of greater importance in the mid-latitudes.



4 The linear shallow water equations

Corresponding to the four equations in the vertical (4) there are a set of
equations governing the horizontal flow
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The last equality here coming from the hydrostatic equation. The third
and fourth equations here can be combined and a new variable h = gn
introduced. The resulting equations

U — fV = —h,
Vt + fU = _hy (9)
hi+ AU +V,) = 0

are commonly referred to as the linear shallow water equations. We shall
consider their solution further in the next Lecture however it is worth exam-
ining here the solutions which occur when the Coriolis term is dropped as
these have wide applicability in atmospheric flows particularly and illustrate
simply some important dynamical properties. The equations in this case are
easily reduced to one constant coefficient linear PDE for h. The x derivative
of the first equation; the y derivative of the second and the ¢ derivative of
the third are all combined to obtain

hiy = o (hay + hyy) (10)
Consider now a general wave like solution of the form
h = hgexp(i(wt — kx — ly)
Substitution into (10) gives the wave dispersion relation
w? = Ak +1?)

Waves with this dispersion relation (or approximately) are called gravity
waves and their group velocity is given by
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which has magnitude equal to the shallow water speed for the particular
vertical mode they are derived from. The direction of propagation is pref-
erentially in the direction of greatest wavenumber or smallest wavelength.
Gravity waves are often seen in the atmosphere and are generated by rapidly
varying forcing such as convective systems and flow over topography.

5 Generalization to a compressible fluid

There is little inherent difficulty in generalizing our incompressible derivation
to the compressible case and little of great additional qualitative interest is
revealed. It is convenient in this case to work with pressure vertical coordi-
nates and use the equations derived in the first section of the last Lecture.
The mathematics of the derivation of the Sturm Liouville system is essen-
tially identical in form to the incompressible case discussed above (exercise
for interested students). The only complication concerns boundary condi-
tions. The vertical domain is mapped from semi-infinite to finite by the use
of pressure. The boundary condition at p = 0 is rather obvious (w = 0)
but the boundary condition at the bottom of the atmosphere is a little less
obvious but can be shown to be

0o

w= po(pz)g

where the maximum pressure is p;. The finite domain implies a fully
discrete spectrum for the positive eigenvalues of the problem and they are
related to the incompressible solutions in a rather clear way albeit with mod-
ified values. The horizontal equations remain identical i.e. they are the
shallow water equations.

6 Other linearizations of the equations

We consider first some basic concepts in dynamical systems theory. A general
(unforced) linearized dynamical system may be written as
o
—=A 11
= Ay (11)
where the vector 1 specifies the state of the system and the operator
A governs the time evolution. The eigenvectors of A are often referred to



as the normal modes and the corresponding complex eigenvalues determine
the growth/decay and oscillatory frequency of these modes. In conservative
dynamical systems A satisfies the anti-hermitian property!

A=-A"

where the star indicates the Hermitian conjugate. This relation implies
that it has purely imaginary eigenvalues? which means that the normal modes
oscillate with constant amplitude. This can be shown also by defining the so-
called propagator U(t',t) which takes a state vector at a time ¢ and transforms
it to the appropriate state vector at time t'. It is easily demonstrated by
discretizing (11) and iterating that

U(t',t) = exp((t' — t)A)

from which it is easily demonstrated that if A is antihermitian then U(¢',t)
is orthogonal which implies that it preserves the norm of the state vectors.

The shallow water equations control the dynamics of solutions obtained
by linearizing the primitive equations about a state of rest and we can write
these in the matrix form

o Ufe 0 f —C% Ule
% Vie | = —f 0 —Co, V/e
h/c? —cZ _Ca% 0 h/c?

where for convenience we have “non-dimensionalized” the equations using
the shallow water speed. Now as is well known (and can be shown intuitively
by discretization) the partial differential operators a% and a% are antiher-
mitian and so it follows easily that the operator A for the shallow water
equations is also. Thus these equations have purely oscillatory solutions and
the system is conservative.

If the equations are linearized about a state of non-rest then, in general,
the operator A is no longer antihermitian. An obvious example is a lin-
earization about a linearly varying zonal velocity U. If we assume that this

variation occurs in the meridional direction then

Vg [-Uy —c5
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1One may need to transform state variables to make this apparent.
2 As should be well known, Hermitean operators have real eigenvalues



In this case A is obviously not antihermitian and in fact for U, large enough
there exist growing normal modes. This is commonly referred to as barotropic
instability and occurs frequently in many situations in the atmosphere.



