Atmospheric Dynamics

Lecture 5: Quasigeostrophic theory

1 Pressure as a vertical coordinate

The primitive equations can be rewritten in a somewhat more tractable form if
we consider pressure as a vertical coordinate. In general pressure drops mono-
tonically with altitude so this amounts usually to just a stretching transforma-
tion. The use of the hydrostatic equation and elementary calculus allows us to
rewrite the horizontal momentum equations in a somewhat simpler form as
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where w = % is the pressure coordinate vertical velocity. The hydrostatic

equation can easily be transformed to
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Rederivation of the continuity equation in pressure coordinates (Holton sec-
tion 3.1) results in a considerable simplification to a solenoidal form:
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Finally the first law of thermodynamics can be written as
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is called the static stability parameter which combines the mechanical energy
term and the vertical advection of temperature. It typically has a value of
5 x 107K (Pa)~! in the mid troposphere.

We have a new set of five variables u,v,w,® and T (we are neglecting the
effects of humidity for the present) with five equations.



2 Geostrophy and the Rossby number

As was mentioned in the previous lecture, large scale mid latitude (synoptic)
variability is characterized by an approximate balance between the pressure
gradient term and the Coriolis term in the horizontal momentum equations.
The former can be replaced with the geopotential gradient term if we consider
the pressure coordinate equations. If we choose a typical wind scale U and
horizontal length scale L as well as assume a particular latitude by selecting a
Coriolis parameter fy then this balance can be expressed through the Rossby
number
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having a value much smaller than unity. This follows since the Rossby num-
ber gives the ratio in magnitude of the total time derivative and Coriolis terms
in the horizontal momentum equations. In pressure coordinates this balanced
flow (the geostrophic flow) is given by
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In a horizontal sense then this flow is at right angles to the gradient vector
of geopotential i.e. it is tangential to the contours of geopotential. It is easily
checked that the horizontal divergence of this flow vanishes implying that any
such divergence in synoptic flow must arise from a deviation from geostrophic
balance. Note that the continuity equation implies that vertical velocity (in
pressure coordinates at least) is the vertical integral of horizontal divergence
and so must also arise from (small) deviations from geostrophic flow.

3 Quasigeostrophic flow

A useful way to analyze synoptic variability is to split the flow into geostrophic
and ageostrophic parts. For small Rossby numbers the latter component is small
(the ratio of the magnitudes is approximately Ro) and so we can simplify our
equations using a perturbation analysis. Formally we write
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insert this decomposition into equations (1), (2), (3) and (4) and retain only
terms of first order in Ro (the geostrophic terms of order unity drop out). It is
common also to assume that the ratio of the variation in the Coriolis parameter
to the mean value fj is also of the same order as Ro. This assumption is known
as the beta plane approximation and allows us to write (by linearization)
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and assume that
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The momentum equations then become
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Note that the vertical advection term has vanished because the geostrophic
component of the vertical velocity is zero. Note also that the geopotential has
vanished due to the removal of the geostrophic balance terms. Every term in
equation (6) has magnitude of order Ro. Since the geostrophic flow is non-
divergent the continuity equation becomes
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which shows that vertical velocities associated with synoptic flows derive
from the ageostrophic flow. The hydrostatic equation remains the same as
equation (2) and becomes simply a diagnostic equation for the geopotential.
Finally the temperature equation simplifies to
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where the over bar means a horizontal average (we are assuming horizontal
variations in temperature are small relative to vertical ones). We are assuming

Ttot(xyyapy t) = TO(p) + T(x7yap7 t)

where Ty(p) is the horizontal mean temperature.

Equations (5), (6), (7), (2) and (8) constitute a solvable set of equations
in the variables @, Wg,w, ® and T and are known as the equations for the
quasigeostrophic flow. They are fundamental to the dynamical analysis of the
synoptic flow.

4 Vorticity

The vertical component of vorticity (we shall call this simply vorticity) asso-
ciated with the geostrophic flow in the quasigeostrophic approximation is a
particularly useful dynamical variable. It is easily related to geopotential by
differentiating the first equation of (5) by = and subtracting the y derivative of
the second 1
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Figure 1: Idealised geopotential pattern

which implies a particularly simple relation between geostrophic vorticity
and geopotential which reverses when a switch is made between hemispheres.
Consider a simple geopotential pattern

® = sin(kx) sin(ly)

which is displayed in Figure 1 for k = [ = 87. The geostrophic flow is along
the contours of geopotential and is easily shown in the Northern hemisphere to
be clockwise around the geopotential minima (lows) and conversely around the
maxima (highs). In the Southern hemisphere the direction reverses because the
Coriolis parameter reverses sign. The vorticity is given by
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i.e. overlaying the geopotential pattern but with the reverse sign. The

greater the wavenumbers k and [ the more rapid the circulation around the

vortices.

A prognostic equation for the geostrophic vorticity is obtained by a similar

manipulation using equations (6):
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where we have used the fact that the (horizontal) divergence of the gesotrophic
flow is zero. This may be easily rearranged to read
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This is the vorticity equation for quasi-geostrophic flow and is to be com-
pared with more general equations from the third lecture. Note that the total
vorticity ¢, + f can change as a result of the vertical stretching of vortex tubes
(third term) or as a consequence of the horizontal advection of relative and
planetary vorticity (second term).
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