
Atmospheri DynamisLeture 4: Planetary Boundary Layer1 Turbulene GenerationThe surfae of the Earth at the bottom of the atmosphere implies that �uidveloities near there are redued by moleular di�usion to very small values.Suh a redution implies very strong vertial wind shears lose to the surfae.Shears in a �uid are well known as a major soure of turbulene. In additionthe surfae temperature is subjet to quite di�erent ontrols from that of theatmosphere whih often implies very strong vertial temperature gradients. Thelatter e�et an generate onvetive overturning as disussed in Leture 2 andoperates whenever the surfae has a higher temperature (during the day forexample). Convetive overturning is fundamentally a turbulent proess as well.As a result of the above two proesses turbulent eddies develop with salesranging from millimeters up to a kilometer or so. They usually are on�ned tothe �rst kilometer above the surfae. This turbulent layer is alled the planetaryboundary layer and to a reasonable approximation has a uniform density dueto the mixing e�ets of the turbulene.2 Large sale, Boussinesq and geostrophi ap-proximations in the mid-latitudesThe �rst two were mentioned brie�y in the �rst leture. They are appropriatefor the planetary boundary layer �ow and a full and detailed derivation may befound in Holton in Chapter 2. Here we sketh the important elements for ourpartiular appliation. Firstly when a large sale (or synopti) �ow in the mid-latitudes is onsidered the Coriolis terms in the momentum equations simplifyonsiderably. In addition the real atmosphere is haraterized by muh greatervariations in density in the vertial diretion rather than in the horizontal. Thisis basially a onsequene of the dominane of gravitation in the momentumequations. If we write the density then as
ρ(x, y, z) = ρ̄0(z) + ρ′(x, y, z)with
ρ̄0(z) ≡

∫ ∫

ρ(x, y, z)dxdythen for atmospheri �ows over most of the troposphere ρ′ ≪ ρ. If a saleanalysis of the ontinuity equation is then performed for large sale �ows (seeHolton again) then one an dedue the simpler form appropriate to large saleatmospheri �ows:
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The Boussinesq approximation onsists of replaing the density in all equa-tions aside from the vertial momentum equation with a onstant value ρm. It isappropriate in irumstanes where density variations about this onstant valueare small whih is the situation appliable to the planetary boundary layer. Thehorizontal momentum equations and the ontinuity equation redue then to
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∇.−→u = 0 (1)Notie that the ontinuity equation has taken on the form appropriate forinompressible �ow.Finally if one is interested in large sale �ows in the mid-latitudes ommonlyalled synopti �ows then based on the observed spatial, wind and pressurevariation sales of suh �ows in the interior of the atmosphere (see page 39 inHolton), one an dedue that the left hand side of the �rst two equations aboveis an order of magnitude less than both terms on the right hand side. If theseterms are dropped then we have an approximate �ow known as the geostrophi�ow
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py = fugNotie that suh a �ow does not involve time derivatives so is non-dynami.This is referred to in meteorologial parlane as a diagnosti as opposed toprognosti �ow. In the next leture we will onsider a higher order prognostiversion of this �ow alled the quasi-geostrophi approximation.3 Reynolds averagingOne approah to understanding the e�ets of the turbulent eddies in the bound-ary layer involves the separation of the �ow into a fast and slow omponent withrespet to time. The former an be viewed as the response due to the turbulenteddies while the latter the slowly varying �ow. Symbolially one separates the�ow as
u = ū + u′where the over-bar represents a long term temporal average and the primedeviations from this. By de�nition one assumes that the time average over theseleted time interval of the deviation (or �utuation) �eld is zero:

u′ = 0It is trivial to verify for two arbitrary variables that
ab = āb̄ + a′b′ (2)2



Now onsider the horizontal momentum equations for the boundary layerand substitute the above deomposition into both equations and perform anaverage with respet to time. Use of the equations (1) and (2) then results inthe equations:̄
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∂zThe square braketed terms on the right hand side of the equations aboverepresents the in�uene of the turbulent eddies on the mean �ow and are learlythe divergene of various veloity �ux terms. When divided by the mean densitythere are nine suh terms for veloity (there are three more that appear inthe unlisted vertial momentum equation) and they are alled olletively theReynolds stress tensor. Using sensitive measuring devies with high temporalresolution they an atually be measured. Of ourse the Reynolds deompositiondoes not help us solve the equations sine we need to know some relation betweenthe Reynolds stresses and the mean �elds of the system. This problem is alledthe losure problem and is ommon to situations involving turbulene. Thereare similar terms in the temperature equation whih represent the �ux of heatwithin the system.In the event that we are dealing with a surfae that is uniform (often areasonable assumption) then the turbulene an be onsidered to be horizontallyhomogeneous and the above equations redue to
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(3)Notie the similarity of this set of equations to the equations disussed inthe �nal setion of Leture 2. The vetor
−→
X ≡ ρm(u′w′, v′w′)is ommonly alled the Reynolds stress.4 Slow large sale �ow in the boundary layerWhile the geostrophi approximation disussed above may be a fairly aurateone for interior large sale �ows in the mid-latitudes, it is not appropriate forthe boundary layer. In fat it is easily shown that there the turbulent Reynolds3



stresses are omparable in magnitude to the Coriolis and pressure gradient termsin equations (3). Reappliation then of the saling argument of setion 1 showsthat the terms on the left hand side of equations (3) are an order of magnitudeless than those on the right hand side. Thus to a good approximation we havethe following equations for the slow �ow in the mid-latitude boundary layer:
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(4)It is instrutive to integrate these equations over the depth of the boundarylayer. At the top of this layer where the turbulent eddies are small the Reynoldsstress terms also beome rather small. On the other hand at the surfae thestress is just given by the empirial bulk relations disussed in Leture 2. Thusthe integrated mean �ow is given by
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+ Ys (6)where the apital letters denote the slow integrated boundary layer �ow andthe surfae stress is (Xs, Ys). Notie the importane of the surfae stress termsin determining this �ow and its deviation from a geostrophi �ow.5 Simple losures and the Ekman �owEquations (3) or (5) and (6) are not in losed form so annot be solved withoutfurther assumption about how the turbulene within the boundary layer dependson the slow �ow. One moderately suessful approah to this issue is to arguein analogy with the well understood proess of moleular di�usion. In that ase�uxes are assumed proportional to the loal gradients of a partiular quantity.This assumption regarding the turbulene is known as �ux gradient theory andassumes the following form for the vertial Reynolds (pseudo) stresses:

u′w′ = −Kmuz

v′w′ = −Kmvz
(7)where Km is alled the eddy visosity. This quantity, as was mentionedin Leture 2, is usually assumed in most turbulene parameterizations to be afuntion of the loal �uids suseptibility to instability as determined by exten-sive laboratory experiments. As a rule these parameterizations give reasonableresults when ompared with observed boundary layer �ows but it is lear thatthey are no substitute for a full resolution of the turbulent eddies. A very ativearea of urrent researh is to use very high resolution models able to resolveat least a signi�ant fration of the eddies and then ompare results with �uxgradient parameterizations. 4



In order to develop some understanding of the basi dynamial e�ets of theturbulene it is ommon to make the rude assumption that the eddy visosityis onstant. Suh an assumption was made by the �rst investigator in this �eldV. Ekman in the early 20th entury and the resulting solutions are known asthe Ekman �ow. Substituting the �ux gradient relations (7) with onstant eddyvisosity into equation (4) and for onveniene dropping over-bars gives theequations.
Kmuzz + f(v − vg) = 0
Kmvzz − f(u − ug) = 0These oupled linear seond order di�erential equations are easily solved bystandard methods. It is ommon to assume for simpliity that the pressure isonstant in the boundary layer and hene so are the geostrophi winds. Furtherone an assume reasonably boundary onditions that the winds vanish at the sur-fae and math the geostrophi winds at the top of the boundary layer. Finallyto simplify the interpretation onsider the ase that the meridional omponentof the geostrophi wind vanishes (the more general ase adds little). Combiningthe two oupled equations above results in a fourth order linear equation in z.After imposing the boundary onditions we obtain:

u = ug (1 − exp (−γz) cos (γz))
v = ug exp (−γz) sin (γz)where the vertial saling parameter is given by

γ = (f/2Km)
1/2Note that we are assuming that f > 0 i.e. we are in the Northern Hemi-sphere1. The boundary layer height is given by h = π/γ. These solutionsrepresent a spiral (the Ekman spiral) whih involves the rotation between u and

v as height inreases. Figure 1 is a plot of these variables as a funtion of theangle γz.
Figure 1: The Ekman spiral solution. Axes are the ratio of the solutions to thezonal geostropi wind1In the Southern Hemisphere, the solution is the same exept the sign of v is reversed.5



In real world boundary layers spirals qualitatively similar to the Ekmansolution are often observed however the marked deviations from the idealizedsolution is an indiation of the inadequay of the assumption of onstant eddyvisosity. Plotted in Figure 2 are some real soundings from Jaksonville Florida.Also shown is a spiral resulting from a somewhat more realisti theory of Km.
Figure 2: Observed winds in a boundary layer near Jaksonville FL. Also plottedare the Ekman spiral (upper urve) and a more realisti formulation of Km.6 Ekman pumpingThe presene of a turbulent rotating boundary layer implies that there often isa signi�ant vertial veloity at the top of this layer whih in�uenes obviouslythe interior of the �uid. Consider the Ekman �ow of the last setion. Firstlythe ontinuity equation (1) implies that sine the vertial veloity is zero at thesurfae then the vertial veloity at the top of the boundary layer is simply thevertial integral of the horizontal onvergene −(ux + vy) within the boundarylayer. Additionally our simplifying assumption that vg = 0 implies that thepressure does not vary in the x diretion and so ug is also independent of x.Using this and integrating the Ekman spiral equations over the boundary layerwe obtain to a good approximation that
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)where the geostrophi vertial omponent of the vortiity is given by
ζg = −

∂ug

∂yThis equation is a good approximation for pratial situations as well as ourhighly idealized Ekman spiral. In the Southern Hemisphere the sign reverses. Inthe ase of vorties it implies that lokwise irulations in the Northern hemi-sphere (ylones) have have an upward direted vertial veloity at boundarylayer top while the opposite holds for antiylones. In the Southern Hemisphereanti-lokwise irulations have this property but are still alled ylones there(more detail in the next leture). This pumping e�et of the boundary layer6



is an important dynamial e�et in many di�erent situations and is unique torotating �ows.
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