
Atmospheri
 Dynami
sLe
ture 4: Planetary Boundary Layer1 Turbulen
e GenerationThe surfa
e of the Earth at the bottom of the atmosphere implies that �uidvelo
ities near there are redu
ed by mole
ular di�usion to very small values.Su
h a redu
tion implies very strong verti
al wind shears 
lose to the surfa
e.Shears in a �uid are well known as a major sour
e of turbulen
e. In additionthe surfa
e temperature is subje
t to quite di�erent 
ontrols from that of theatmosphere whi
h often implies very strong verti
al temperature gradients. Thelatter e�e
t 
an generate 
onve
tive overturning as dis
ussed in Le
ture 2 andoperates whenever the surfa
e has a higher temperature (during the day forexample). Conve
tive overturning is fundamentally a turbulent pro
ess as well.As a result of the above two pro
esses turbulent eddies develop with s
alesranging from millimeters up to a kilometer or so. They usually are 
on�ned tothe �rst kilometer above the surfa
e. This turbulent layer is 
alled the planetaryboundary layer and to a reasonable approximation has a uniform density dueto the mixing e�e
ts of the turbulen
e.2 Large s
ale, Boussinesq and geostrophi
 ap-proximations in the mid-latitudesThe �rst two were mentioned brie�y in the �rst le
ture. They are appropriatefor the planetary boundary layer �ow and a full and detailed derivation may befound in Holton in Chapter 2. Here we sket
h the important elements for ourparti
ular appli
ation. Firstly when a large s
ale (or synopti
) �ow in the mid-latitudes is 
onsidered the Coriolis terms in the momentum equations simplify
onsiderably. In addition the real atmosphere is 
hara
terized by mu
h greatervariations in density in the verti
al dire
tion rather than in the horizontal. Thisis basi
ally a 
onsequen
e of the dominan
e of gravitation in the momentumequations. If we write the density then as
ρ(x, y, z) = ρ̄0(z) + ρ′(x, y, z)with
ρ̄0(z) ≡

∫ ∫

ρ(x, y, z)dxdythen for atmospheri
 �ows over most of the troposphere ρ′ ≪ ρ. If a s
aleanalysis of the 
ontinuity equation is then performed for large s
ale �ows (seeHolton again) then one 
an dedu
e the simpler form appropriate to large s
aleatmospheri
 �ows:
∇.(ρ̄0

−→u ) = 01



The Boussinesq approximation 
onsists of repla
ing the density in all equa-tions aside from the verti
al momentum equation with a 
onstant value ρm. It isappropriate in 
ir
umstan
es where density variations about this 
onstant valueare small whi
h is the situation appli
able to the planetary boundary layer. Thehorizontal momentum equations and the 
ontinuity equation redu
e then to
du
dt = −

1
ρm

px + fv
dv
dt = −

1
ρm

py − fu

∇.−→u = 0 (1)Noti
e that the 
ontinuity equation has taken on the form appropriate forin
ompressible �ow.Finally if one is interested in large s
ale �ows in the mid-latitudes 
ommonly
alled synopti
 �ows then based on the observed spatial, wind and pressurevariation s
ales of su
h �ows in the interior of the atmosphere (see page 39 inHolton), one 
an dedu
e that the left hand side of the �rst two equations aboveis an order of magnitude less than both terms on the right hand side. If theseterms are dropped then we have an approximate �ow known as the geostrophi
�ow
1

ρm

px = fvg

−
1

ρm

py = fugNoti
e that su
h a �ow does not involve time derivatives so is non-dynami
.This is referred to in meteorologi
al parlan
e as a diagnosti
 as opposed toprognosti
 �ow. In the next le
ture we will 
onsider a higher order prognosti
version of this �ow 
alled the quasi-geostrophi
 approximation.3 Reynolds averagingOne approa
h to understanding the e�e
ts of the turbulent eddies in the bound-ary layer involves the separation of the �ow into a fast and slow 
omponent withrespe
t to time. The former 
an be viewed as the response due to the turbulenteddies while the latter the slowly varying �ow. Symboli
ally one separates the�ow as
u = ū + u′where the over-bar represents a long term temporal average and the primedeviations from this. By de�nition one assumes that the time average over thesele
ted time interval of the deviation (or �u
tuation) �eld is zero:

u′ = 0It is trivial to verify for two arbitrary variables that
ab = āb̄ + a′b′ (2)2



Now 
onsider the horizontal momentum equations for the boundary layerand substitute the above de
omposition into both equations and perform anaverage with respe
t to time. Use of the equations (1) and (2) then results inthe equations:̄
dū

dt
= −

1

ρm

∂p̄

∂x
+ f v̄ −

[

∂(u′u′)

∂x
+

∂(u′v′)

∂y
+

∂(u′w′)

∂z

]

d̄v̄

dt
= −

1

ρm

∂p̄

∂y
− fū −

[

∂(u′v′)

∂x
+

∂(v′v′)

∂y
+

∂(v′w′)

∂z

]where the over bar on the total time derivative means
d̄

dt
≡

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂zThe square bra
keted terms on the right hand side of the equations aboverepresents the in�uen
e of the turbulent eddies on the mean �ow and are 
learlythe divergen
e of various velo
ity �ux terms. When divided by the mean densitythere are nine su
h terms for velo
ity (there are three more that appear inthe unlisted verti
al momentum equation) and they are 
alled 
olle
tively theReynolds stress tensor. Using sensitive measuring devi
es with high temporalresolution they 
an a
tually be measured. Of 
ourse the Reynolds de
ompositiondoes not help us solve the equations sin
e we need to know some relation betweenthe Reynolds stresses and the mean �elds of the system. This problem is 
alledthe 
losure problem and is 
ommon to situations involving turbulen
e. Thereare similar terms in the temperature equation whi
h represent the �ux of heatwithin the system.In the event that we are dealing with a surfa
e that is uniform (often areasonable assumption) then the turbulen
e 
an be 
onsidered to be horizontallyhomogeneous and the above equations redu
e to
d̄ū
dt = −

1
ρm

∂p̄
∂x + f v̄ −

∂(u′w′)
∂z

d̄v̄
dt = −

1
ρm

∂p̄
∂y − fū −

∂(v′w′)
∂z

(3)Noti
e the similarity of this set of equations to the equations dis
ussed inthe �nal se
tion of Le
ture 2. The ve
tor
−→
X ≡ ρm(u′w′, v′w′)is 
ommonly 
alled the Reynolds stress.4 Slow large s
ale �ow in the boundary layerWhile the geostrophi
 approximation dis
ussed above may be a fairly a

urateone for interior large s
ale �ows in the mid-latitudes, it is not appropriate forthe boundary layer. In fa
t it is easily shown that there the turbulent Reynolds3



stresses are 
omparable in magnitude to the Coriolis and pressure gradient termsin equations (3). Reappli
ation then of the s
aling argument of se
tion 1 showsthat the terms on the left hand side of equations (3) are an order of magnitudeless than those on the right hand side. Thus to a good approximation we havethe following equations for the slow �ow in the mid-latitude boundary layer:
f(ū − ūg) −

∂(u′w′)
∂z = 0

f(v̄ − v̄g) + ∂(v′w′)
∂z = 0

(4)It is instru
tive to integrate these equations over the depth of the boundarylayer. At the top of this layer where the turbulent eddies are small the Reynoldsstress terms also be
ome rather small. On the other hand at the surfa
e thestress is just given by the empiri
al bulk relations dis
ussed in Le
ture 2. Thusthe integrated mean �ow is given by
fV =

1

ρm

∂P

∂x
− Xs (5)

fU = −
1

ρm

∂P

∂y
+ Ys (6)where the 
apital letters denote the slow integrated boundary layer �ow andthe surfa
e stress is (Xs, Ys). Noti
e the importan
e of the surfa
e stress termsin determining this �ow and its deviation from a geostrophi
 �ow.5 Simple 
losures and the Ekman �owEquations (3) or (5) and (6) are not in 
losed form so 
annot be solved withoutfurther assumption about how the turbulen
e within the boundary layer dependson the slow �ow. One moderately su

essful approa
h to this issue is to arguein analogy with the well understood pro
ess of mole
ular di�usion. In that 
ase�uxes are assumed proportional to the lo
al gradients of a parti
ular quantity.This assumption regarding the turbulen
e is known as �ux gradient theory andassumes the following form for the verti
al Reynolds (pseudo) stresses:

u′w′ = −Kmuz

v′w′ = −Kmvz
(7)where Km is 
alled the eddy vis
osity. This quantity, as was mentionedin Le
ture 2, is usually assumed in most turbulen
e parameterizations to be afun
tion of the lo
al �uids sus
eptibility to instability as determined by exten-sive laboratory experiments. As a rule these parameterizations give reasonableresults when 
ompared with observed boundary layer �ows but it is 
lear thatthey are no substitute for a full resolution of the turbulent eddies. A very a
tivearea of 
urrent resear
h is to use very high resolution models able to resolveat least a signi�
ant fra
tion of the eddies and then 
ompare results with �uxgradient parameterizations. 4



In order to develop some understanding of the basi
 dynami
al e�e
ts of theturbulen
e it is 
ommon to make the 
rude assumption that the eddy vis
osityis 
onstant. Su
h an assumption was made by the �rst investigator in this �eldV. Ekman in the early 20th 
entury and the resulting solutions are known asthe Ekman �ow. Substituting the �ux gradient relations (7) with 
onstant eddyvis
osity into equation (4) and for 
onvenien
e dropping over-bars gives theequations.
Kmuzz + f(v − vg) = 0
Kmvzz − f(u − ug) = 0These 
oupled linear se
ond order di�erential equations are easily solved bystandard methods. It is 
ommon to assume for simpli
ity that the pressure is
onstant in the boundary layer and hen
e so are the geostrophi
 winds. Furtherone 
an assume reasonably boundary 
onditions that the winds vanish at the sur-fa
e and mat
h the geostrophi
 winds at the top of the boundary layer. Finallyto simplify the interpretation 
onsider the 
ase that the meridional 
omponentof the geostrophi
 wind vanishes (the more general 
ase adds little). Combiningthe two 
oupled equations above results in a fourth order linear equation in z.After imposing the boundary 
onditions we obtain:

u = ug (1 − exp (−γz) cos (γz))
v = ug exp (−γz) sin (γz)where the verti
al s
aling parameter is given by

γ = (f/2Km)
1/2Note that we are assuming that f > 0 i.e. we are in the Northern Hemi-sphere1. The boundary layer height is given by h = π/γ. These solutionsrepresent a spiral (the Ekman spiral) whi
h involves the rotation between u and

v as height in
reases. Figure 1 is a plot of these variables as a fun
tion of theangle γz.
Figure 1: The Ekman spiral solution. Axes are the ratio of the solutions to thezonal geostropi
 wind1In the Southern Hemisphere, the solution is the same ex
ept the sign of v is reversed.5



In real world boundary layers spirals qualitatively similar to the Ekmansolution are often observed however the marked deviations from the idealizedsolution is an indi
ation of the inadequa
y of the assumption of 
onstant eddyvis
osity. Plotted in Figure 2 are some real soundings from Ja
ksonville Florida.Also shown is a spiral resulting from a somewhat more realisti
 theory of Km.
Figure 2: Observed winds in a boundary layer near Ja
ksonville FL. Also plottedare the Ekman spiral (upper 
urve) and a more realisti
 formulation of Km.6 Ekman pumpingThe presen
e of a turbulent rotating boundary layer implies that there often isa signi�
ant verti
al velo
ity at the top of this layer whi
h in�uen
es obviouslythe interior of the �uid. Consider the Ekman �ow of the last se
tion. Firstlythe 
ontinuity equation (1) implies that sin
e the verti
al velo
ity is zero at thesurfa
e then the verti
al velo
ity at the top of the boundary layer is simply theverti
al integral of the horizontal 
onvergen
e −(ux + vy) within the boundarylayer. Additionally our simplifying assumption that vg = 0 implies that thepressure does not vary in the x dire
tion and so ug is also independent of x.Using this and integrating the Ekman spiral equations over the boundary layerwe obtain to a good approximation that

wtop = ζg

(

1

2γ

)where the geostrophi
 verti
al 
omponent of the vorti
ity is given by
ζg = −

∂ug

∂yThis equation is a good approximation for pra
ti
al situations as well as ourhighly idealized Ekman spiral. In the Southern Hemisphere the sign reverses. Inthe 
ase of vorti
es it implies that 
lo
kwise 
ir
ulations in the Northern hemi-sphere (
y
lones) have have an upward dire
ted verti
al velo
ity at boundarylayer top while the opposite holds for anti
y
lones. In the Southern Hemisphereanti-
lo
kwise 
ir
ulations have this property but are still 
alled 
y
lones there(more detail in the next le
ture). This pumping e�e
t of the boundary layer6



is an important dynami
al e�e
t in many di�erent situations and is unique torotating �ows.
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