
Atmospheric Dynamics

Lecture 3: Circulation and Vorticity

1 Circulation

Considerations of angular momentum of �uid parcels is particularly important
in understanding atmospheric dynamics. Here we introduce the basic concepts.

Circulation C is de�ned as the line integral about a closed contour within a
�uid of the local velocity of elements

C =
∮ −→
U · dl

If the contour is taken to be a circle of radius R rotating as a solid body
with angular velocity Ω then it is easily shown that

C =
∫ 2π

0

ΩR2dλ = 2πΩR2

showing that the circulation is just 2π times the angular momentum of the
circle. Circulation has the advantage over angular velocity that no assumption
of a solid body is required and so it is suited to describing angular momentum
ideas in a �uid. The time rate of change of circulation for a �uid element can
easily be computed (using the equations from Lecture 1) and is quite revealing:

dC

dt
=
∮
d
−→
U · dl
dt

=
∮ {

d
−→
U .

dt
· dl +

−→
U · d

−→
U

}
(1)

= −
∮ {

∇p · dl
ρ

−∇Φ · dl
}

+
1
2

∮
d
(−→
U ·
−→
U
)

= −
∮
ρ−1dp

as the second and third closed line integrals on line 2 vanish. The �nal
integral is called the solenoidal term. If the density is only a function of pressure,
a situation referred to as a barotropic �uid, then the solenoidal term vanishes
due to the properties of line integrals and so circulation is conserved following
barotropic �uid elements.

It is also useful to apply Stokes Theorem to obtain

C =
∮ −→
U · dl =

∫
S

∫
(∇×

−→
U ) · ndσ ≡

∫
S

∫
−→ς · ndσ (2)

where S is a surface enclosing by the closed contour and n is a normal vector
to this surface. The quantity −→ς is referred to as the vorticity of the �uid and
will be discussed further below.
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Given that we are dealing with a rotating frame of reference (see Lecture
1) it is convenient to separate out what is known as the relative and absolute

circulation and vorticity: Using the fourth equation from Lecture 1 we have

−→ς a = −→ς +∇× (
−→
Ω ×−→x r) = −→ς + 2

−→
Ω

where −→x r is the position vector relative to the Earth's center and Ω is the
Earth's rotation vector. Note that we use the subscript a to denote absolute
quantities and drop subscripts when referring to relative quantities and that we
have used a standard identity from vector calculus. Applying this relation to
equation (2) we obtain a relationship between absolute and relative circulation:

Ca =
∫
S

∫
(−→ς + 2

−→
Ω ) · −→n dσ = C + 2

∫
S

∫ −→
Ω · −→n dσ

If S is a (locally) horizontal plane of area A then we have

Ca = C + 2Ω sinφA = C + fA

where Ω is the magnitude of
−→
Ω , φ is latitude and f is the Coriolis parameter

discussed in Lecture 1. Clearly conservation of (absolute) circulation (as holds,
for example, for a barotropic �uid) therefore implies that �uid particles changing
latitude will have their relative circulation (the circulation in the usual frame of
reference) modi�ed by the change in the Coriolis parameter or by a change in
the area of the �uid element.

An interesting application of the solenoidal relation is when there are hori-
zontal variations in atmospheric density due to density gradients. In Figure 1
we have displayed a situation that applies when sea breezes develop.

Using the ideal gas law and equation (1) we can write

dCa
dt

= −
∮
RTd ln p

On the circuit displayed in the Figure the horizontal legs make no contribu-
tion since pressure is constant along them. Thus we may deduce that

dCa
dt

= R ln
(
p0

p1

)
(T̄2 − T̄1) > 0

where the overbar indicates a weighted vertical average. This shows that
there will be an acceleration in circulation about the displayed loop. This is the
mechanism for the ocean sea breeze.

2 The Vorticity equation

In meteorology we are often interested in horizontal circulations such as those
associated with high and low pressure vortices as will be discussed in much
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Figure 1:

more detail in a later Lecture. As a consequence the vertical component of the
vorticity vector (ζ ≡ vx−uy) is often of considerable interest. If this is positive
we have anti-clockwise �ow and vice-versa for a negative value. We can obtain
an equation for this by taking the (vertical part) of the curl of the momentum
equations1:

∂

∂x

(
vt + u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = −1

ρ

∂p

∂y

)
− ∂

∂y

(
ut + u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
− fv = −1

ρ

∂p

∂y

)
from which we obtain

dζ

dt
+ (ζ + f)∇ · −→u +

(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+ v

∂f

∂y
=

1
ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
where the divergence is assumed two dimensional here. This may be also

(more compactly) written as

d(ζ + f)
dt

+ (ζ + f)∇ · −→u = −
(
∂w

∂x

∂v

∂z
− ∂w

∂y

∂u

∂z

)
+

1
ρ2

(
∂ρ

∂x

∂p

∂y
− ∂ρ

∂y

∂p

∂x

)
since the Coriolis parameter f (= 2Ω sinϕ) only depends on y. The �rst

term on the RHS is called the twisting term while the second is called the
solenoidal term. Both are potentially sources of vorticity for a �uid parcel
but for large scale �ows these source terms for vorticity are generally small

1We are considering x coordinates to be in the longitudinal direction and y coordinates to

be in the latitudinal direction.
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as can be shown by choosing appropriate (i.e. those typical of synoptic �ows)
values for the variables. The details can be found in Holton on page 106-
108. Generally then for such �ows vorticity is generated by the presence of
(horizontal) divergence. For small scale �ows however the other two terms can
be important- an interesting example being the �rst which is thought responsible
for tornadoes.

3 Potential Vorticity in a shallow homogeneous

layer

If we consider a �uid of this type then in the momentum equation the vertical
advection terms may be neglected and horizontal pressure perturbations are
due solely to variations in the �uid depth η. We may therefore write (using the
hydrostatic equation)

ut + u
∂u

∂x
+ v

∂u

∂y
− fv = −g ∂η

∂y

vt + u
∂v

∂x
+ v

∂v

∂y
+ fu = −g ∂η

∂y

It is easily veri�ed that these equations may be rewritten as

ut − (f + ζ)v = −Bx (3)

vt + (f + ζ)u = −By
where B is the so-called Bernoulli function given by

B = gη +
1
2

(u2 + v2)

Note the presence of the absolute vorticity in equations (3). We can eliminate
B from these equations to obtain the relevant form of the vorticity equation for
this kind of �uid:

d(ζ + f)
dt

+ (ζ + f)∇ · −→u = 0 (4)

which is the form of this equation that also holds approximately for large
scale synoptic �ow (see above). Now the equation of continuity for a shallow
homogeneous layer is easily derived along the same lines as the general derivation
in Lecture 1 and is

d(H + η)
dt

+ (H + η)∇ · −→u = 0 (5)

where H is the mean depth of the �uid (and so H + η is the total depth of
a particular column of the �uid). Equations (4) and (5) may now combined by
eliminating the horizontal divergence terms. The result is that

dQ

dt
= 0

Q ≡ ζ + f

H + η
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is called the potential vorticity and is conserved following �uid elements. If
we consider a cylinder of this shallow �uid we can see that as this �vortex tube�
is stretched vertically (and made thinner) it's absolute vorticity will need to
increase in order to keep Q a constant. Note also the implications of altering
latitude on the tube as well.

4 Ertel's Potential Vorticity

The equation of state for atmospheric density derived in Lecture 1 may be recast
in terms of potential temperature and shows that if one considers isentropic

surfaces (which are surfaces of constant potential temperature and entropy) then
density is purely a function of pressure providing we ignore the density e�ects
of moisture. It follows from the solenoidal theorem above that the absolute
circulation on such circuits is conserved following the (adiabatic) motion of the
�uid circuit. This conservation law may be written approximately as

d(C + fδA)
dt

= 0

where C is the relative circulation of the parcel whose enclosed area is ap-
proximately δA. In the limit of a very small horizontal circuit we have

ς = lim
δA→0

C

δA

by Stokes theorem. It follows therefore that the quantity

δA(ςθ + f) (6)

is conserved following an isentropic �uid parcel (the subscript indicating
the potential temperature of the isentrope). Consider now the vortex tube
displayed in Figure 2 which is con�ned between two isentropic surfaces which
have a pressure di�erence δp.

Figure 2: A cylindrical column of air moving adiabatically, conserving potential
vorticity.
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The mass of this parcel which must be conserved following its motion is given
by

δM = ρδzδA = −δpδA
g

from which it follows that

δA = −g δM
δp

= g

(
−δθ
δp

)(
δM

δθ

)
= const× g

(
−δθ
δp

)
∼ K

(
−g ∂θ

∂p

)
because δθ is a constant following the motion. It follows now from equation

(6) that the quantity

Q = (ςθ + f)
(
−g ∂θ

∂p

)
is conserved. This quantity is known as Ertel's potential vorticity and gen-

eralizes the notion of potential vorticity developed in the previous section to a
�baroclinic� environment (i.e. one in which there are signi�cant vertical gradi-
ents in density).

The conservation of this quantity in mid-latitude �ows can be used to ex-
plain why westerly �ows over mountains develop downstream oscillations while
easterly �ows do not (see page 100-101 of Holton).
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