Atmospheric Dynamics

Lecture 3: Circulation and Vorticity

1 Circulation

Considerations of angular momentum of fluid parcels is particularly important
in understanding atmospheric dynamics. Here we introduce the basic concepts.

Circulation C' is defined as the line integral about a closed contour within a
fluid of the local velocity of elements
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If the contour is taken to be a circle of radius R rotating as a solid body
with angular velocity 2 then it is easily shown that
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showing that the circulation is just 27 times the angular momentum of the
circle. Circulation has the advantage over angular velocity that no assumption
of a solid body is required and so it is suited to describing angular momentum
ideas in a fluid. The time rate of change of circulation for a fluid element can
easily be computed (using the equations from Lecture 1) and is quite revealing:
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as the second and third closed line integrals on line 2 vanish. The final
integral is called the solenoidal term. If the density is only a function of pressure,
a situation referred to as a barotropic fluid, then the solenoidal term vanishes
due to the properties of line integrals and so circulation is conserved following
barotropic fluid elements.

It is also useful to apply Stokes Theorem to obtain
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where S is a surface enclosing by the closed contour and n is a normal vector
to this surface. The quantity < is referred to as the worticity of the fluid and
will be discussed further below.




Given that we are dealing with a rotating frame of reference (see Lecture
1) it is convenient to separate out what is known as the relative and absolute
circulation and vorticity: Using the fourth equation from Lecture 1 we have
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where 7" is the position vector relative to the Earth’s center and € is the
Earth’s rotation vector. Note that we use the subscript a to denote absolute
quantities and drop subscripts when referring to relative quantities and that we
have used a standard identity from vector calculus. Applying this relation to
equation (2) we obtain a relationship between absolute and relative circulation:
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If S is a (locally) horizontal plane of area A then we have
Co=C+20sinpA=C+ fA

where € is the magnitude of 6, ¢ is latitude and f is the Coriolis parameter
discussed in Lecture 1. Clearly conservation of (absolute) circulation (as holds,
for example, for a barotropic fluid) therefore implies that fluid particles changing
latitude will have their relative circulation (the circulation in the usual frame of
reference) modified by the change in the Coriolis parameter or by a change in
the area of the fluid element.

An interesting application of the solenoidal relation is when there are hori-
zontal variations in atmospheric density due to density gradients. In Figure 1
we have displayed a situation that applies when sea breezes develop.

Using the ideal gas law and equation (1) we can write
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On the circuit displayed in the Figure the horizontal legs make no contribu-
tion since pressure is constant along them. Thus we may deduce that
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where the overbar indicates a weighted vertical average. This shows that
there will be an acceleration in circulation about the displayed loop. This is the
mechanism for the ocean sea breeze.

2 The Vorticity equation

In meteorology we are often interested in horizontal circulations such as those
associated with high and low pressure vortices as will be discussed in much
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Application of the circulation theorem to the sea breeze problem. The closed heavy

solid line is the loop about which the circulation is to be evaluated. Dashed lines
indicate surfaces of constant density.

Figure 1:

more detail in a later Lecture. As a consequence the vertical component of the
vorticity vector ({ = v, — uy) is often of considerable interest. If this is positive
we have anti-clockwise flow and vice-versa for a negative value. We can obtain
an equation for this by taking the (vertical part) of the curl of the momentum
equations’:
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from which we obtain
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where the divergence is assumed two dimensional here. This may be also
(more compactly) written as
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since the Coriolis parameter f (= 2Qsin ) only depends on y. The first
term on the RHS is called the twisting term while the second is called the
solenoidal term. Both are potentially sources of vorticity for a fluid parcel
but for large scale flows these source terms for vorticity are generally small

1'We are considering = coordinates to be in the longitudinal direction and y coordinates to
be in the latitudinal direction.



as can be shown by choosing appropriate (i.e. those typical of synoptic flows)
values for the variables. The details can be found in Holton on page 106-
108. Generally then for such flows vorticity is generated by the presence of
(horizontal) divergence. For small scale flows however the other two terms can
be important- an interesting example being the first which is thought responsible
for tornadoes.

3 Potential Vorticity in a shallow homogeneous
layer

If we consider a fluid of this type then in the momentum equation the vertical
advection terms may be neglected and horizontal pressure perturbations are
due solely to variations in the fluid depth 7. We may therefore write (using the
hydrostatic equation)
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It is easily verified that these equations may be rewritten as
w —(f+Qv=—B; (3)
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where B is the so-called Bernoulli function given by
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Note the presence of the absolute vorticity in equations (3). We can eliminate
B from these equations to obtain the relevant form of the vorticity equation for
this kind of fluid: J
+
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which is the form of this equation that also holds approximately for large
scale synoptic flow (see above). Now the equation of continuity for a shallow
homogeneous layer is easily derived along the same lines as the general derivation
in Lecture 1 and is UH )
+
where H is the mean depth of the fluid (and so H + 7 is the total depth of
a particular column of the fluid). Equations (4) and (5) may now combined by
eliminating the horizontal divergence terms. The result is that




is called the potential vorticity and is conserved following fluid elements. If
we consider a cylinder of this shallow fluid we can see that as this “vortex tube”
is stretched vertically (and made thinner) it’s absolute vorticity will need to
increase in order to keep @ a constant. Note also the implications of altering
latitude on the tube as well.

4 Ertel’s Potential Vorticity

The equation of state for atmospheric density derived in Lecture 1 may be recast
in terms of potential temperature and shows that if one considers isentropic
surfaces (which are surfaces of constant potential temperature and entropy) then
density is purely a function of pressure providing we ignore the density effects
of moisture. It follows from the solenoidal theorem above that the absolute
circulation on such circuits is conserved following the (adiabatic) motion of the
fluid circuit. This conservation law may be written approximately as
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where C' is the relative circulation of the parcel whose enclosed area is ap-
proximately dA. In the limit of a very small horizontal circuit we have
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by Stokes theorem. It follows therefore that the quantity
3A(So + f) (6)

is conserved following an isentropic fluid parcel (the subscript indicating
the potential temperature of the isentrope). Consider now the vortex tube
displayed in Figure 2 which is confined between two isentropic surfaces which
have a pressure difference dp.
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Figure 2: A cylindrical column of air moving adiabatically, conserving potential
vorticity.



The mass of this parcel which must be conserved following its motion is given
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from which it follows that
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because 66 is a constant following the motion. It follows now from equation

(6) that the quantity
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is conserved. This quantity is known as Ertel’s potential vorticity and gen-
eralizes the notion of potential vorticity developed in the previous section to a
“baroclinic” environment (i.e. one in which there are significant vertical gradi-
ents in density).
The conservation of this quantity in mid-latitude flows can be used to ex-
plain why westerly flows over mountains develop downstream oscillations while
easterly flows do not (see page 100-101 of Holton).



