
Atmospheri
 Dynami
sLe
ture 10: Tropi
al Dynami
s1 Introdu
tionThe equatorial region di�ers fundamentally from the mid-latitudes in that theCoriolis parameter vanishes on the equator. This implies that quasi-geostrophi
theory is inappropriate and the geostrophi
 �ow transitions to a dire
t pressuregradient �ow on the equator. Additionally many phenomena in this region areable to be understood (to �rst order at least) by the linearized equations. Sin
ethe mean state is often not large our results from Le
ture 6 are dire
tly relevant.The verti
al analysis performed there still holds however we need to re
onsiderthe shallow water equation solutions.2 The equatorial β-planeIn the tropi
s it is a reasonable approximation to set the Coriolis parameter
f = 2Ω sinϕ to the approximate expression

f = βywhere β = 2.3 × 10−11m−1s−1 is exa
t at the equator and approximately
onstant for most of the tropi
s. y is the distan
e from the equator. The shallowwater equations now read
Ut − βyV = −hx

Vt + βyU = −hy

ht + c2(Ux + Vy) = 0
(1)The usual vorti
ity equation 
an be obtained by subtra
ting the y derivativeof the �rst equation from the x derivative of the se
ond. When the third equationis used this be
omes

(

Uy − Vx +
f

c2
h

)

t

− βV = 0These four equations may be redu
ed to a single equation in V by applying
−f
c2 ∂t to the �rst; 1

c2 ∂tt to the se
ond; − 1
c2 ∂yt to the third and ∂x to the fourth(!). This is

(Vxx + Vyy)t + βVx − c−2Vttt −
β2y2

c2
Vt = 0 (2)This is a linear pde with 
oe�
ients only dependent on y due to the betae�e
t i.e. the variation of the Coriolis parameter with latitude. General solutions1



to these equations 
an be found as usual by separating variables (again) and
an be written as sums of terms of the form
V = V (y) exp (ikx − iωt) (3)where we need to derive a dispersion relation for k and ω. Substitution of(3) into (2) leads to the equation

Vyy +

(

ω2

c2
− k2 − βk

ω
− β2y2

c2

)

V = 0 (4)Now the operator −∂yy + β2

c2 y2 is easily shown to be Hermitian and positiveand we again have a Sturm Liouville problem this time on an in�nite domain.The solutions to this eigenproblem are well known (those of you who have donequantum me
hani
s will re
ognize this equation as the S
hroedinger wave equa-tion for the harmoni
 os
illator whi
h has been mu
h studied). The eigenvaluesare dis
rete and (obviously) bounded below and we have
ω2

c2
− k2 − βk

ω
=

β

c
(2n + 1) for n = 0, 1, 2, 3...... (5)In addition there is a solution whi
h has V = 0. Substitution of this in(1) gives the dispersion relation ω2 = c2k2 and the negative root here givesunbounded solutions for U and h as y → ∞ so we are left with the additionalrelation

ω = kc (6)The solutions to both dispersion relations are plotted in Figure 1.The upper (i.e. high frequen
y) 
urves are gravity waves (qf Le
ture 6); the
urves on the lower left hand side are Rossby waves (qf Le
ture 7) while the
urve 
orresponding to (6) is for the so-
alled Kelvin wave1. We shall 
onsiderall these solutions in more detail below.The eigensolutions of (4) (as well as the additional V = 0) are the well knownparaboli
 
ylinder fun
tions
Dn(ξ) ≡ Dn(

√

β/cy) = exp
(

−ξ2/2
)

Hn(ξ) (7)where Hn(ξ) are the Hermite polynomials for whi
h we have the following
H0(ξ) = 1
H1(ξ) = 2ξ
H2(ξ) = 4ξ2 − 2
∂Hn

∂y = 2nHn−1

ξHn = nHn−1 + 0.5Hn+1

(8)1The other solution whi
h has n = 0 is 
alled amixed Rossby-gravity wave sin
e it resemblesthe former for k → −∞ and the latter for k → ∞.2



Figure 1: Equatorial beta plane dispersion relation 
urves. The unit of frequen
yis √βc while that of the wavenumber k is √

β/c.
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The eigensolutions satisfy the orthogonality relation
∫

∞

−∞

Dn(ξ)Dm(ξ)dξ = 2nn!π1/2δmnNote that we have introdu
ed a natural s
aling distan
e a =
√

c/β whi
h isknown as the equatorial radius of deformation.The �rst few paraboli
 
ylinder fun
tions are displayed in Figure 2.Note that they are symmetri
 (about the equator) for n even and antisym-metri
 for n odd. Solutions for V are proportional to these fun
tions while thesolutions for U and h 
an be obtained by substituting for the V solution ba
kin (1) and using (3), (8) and (7):
V = C exp (ikx − iωt)Dn(ξ)

U = C exp (ikx − iωt)
[

n1/2Dn−1(ξ)
ω+ck + (n+1)1/2Dn+1(ξ)

ω−ck

]

h = C exp (ikx − iωt)
[

n1/2Dn−1(ξ)
ω+ck − (n+1)1/2Dn+1(ξ)

ω−ck

]

(9)Noti
e that when U and h are symmetri
 then V is antisymmetri
 and
onversely. The Kelvin wave solution has V = 0 and U and h proportional to
D0(ξ) (see below for further detail). We now 
onsider the solutions in detail.3 Rossby wavesThe low frequen
y solutions of the dispersion relation (5) are the Rossby waveswhi
h we met in Le
ture 7 and depend for their existen
e on the fa
t that theCoriolis parameter varies with latitude (i.e. that β 6= 0). Their approximatedispersion relation 
an be obtained by negle
ting the term involving ω2 in (5)and solving for ω :

ω =
−βk

k2 + β(2n+1)
c

(10)Note the similarity to dispersion equation derived in Le
ture 7 for the quasi-geostrophi
 equation (set l2+
f2
0

c2 = β(2n+1)
c ). The limits of |k| small (long waves)and |k| large (short waves) are of signi�
ant interest physi
ally. In the former
ase we 
an negle
t k2 from the denominator in (10) and obtain

ω =
−ck

2n + 1
(11)whi
h is nondispersive and indi
ates that these waves propagate towardsthe west. Note that as n in
reases this speed slows. The �rst (or gravest)symmetri
 Rossby wave has n = 1 and the long wave horizontal stru
ture isplotted in Figure 3. Note the 
y
loni
 
ouplet stru
ture. It travels at a speedwhi
h is one third of the shallow water velo
ity.4



Figure 2: Paraboli
 
ylinder fun
tions. Top panel shows the symmetri
 fun
tionsand the bottom the anti-symmetri
 fun
tions.
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Figure 3: Gravest equatorial Rossby wave s
hemati
.Another very important property of Rossby waves is that they have a max-imum frequen
y. This may be obtained by �nding the turning point of ω inrelation (10):
ω2

max =
βc

4(2n + 1)Note how this value in
reases with shallow water speed and de
reases as nin
reases i.e. as the waves have more o�-equatorial proje
tion.4 Kelvin wavesThese waves have no meridional velo
ity and satisfy the nondispersive relation
ω = kcwhi
h means they propagate towards the east with the shallow water speed.Their zonal velo
ity and h stru
ture is given by simply substituting V = 0 into(1) and using (3):

U = U0 exp (ikx − iωt)D0(ξ)
h = cU0 exp (ikx − iωt)D0(ξ)Noti
e that these waves are trapped in the region of the equator (s
aled bythe deformation radius). This was the reason physi
ally for their absen
e fromthe quasi-geostrophi
 equations. 6



5 Gravity wavesAn approximate dispersion relation for these waves 
an be obtained by assuming
ω large in the dispersion relation (5). If this is done then the third term on theleft hand side may be negle
ted and so we obtain

ω2 = c2

(

k2 +
β

c
(2n + 1)

) (12)This relation should be 
ompared to that whi
h was derived in Le
ture 7.The 
omparison is formally the same as for Rossby waves.6 For
ed equationsDiabati
 heating of the atmosphere 
an be taken into a

ount in the linearizedprimitive equations by in
orporating a for
ing term into the temperature equa-tion (see Le
ture 5 equation 4). When the separation of variables o

urs as inLe
ture 7 then ea
h verti
al mode a
quires a for
ing term obtained by proje
t-ing the heating onto the verti
al mode eigenfun
tions for temperature (verti
alvelo
ity eigenfun
tion multiplied by S(p)). This proje
tion 
oe�
ient then ap-pears in the shallow water equations whi
h des
ribe the horizontal �ow. Thuswe have
Ut − βyV = −hx

Vt + βyU = −hy

ht + c2(Ux + Vy) = −sQ
(13)where Q is the diabati
 heating. The 
oe�
ient s is determined by theproje
tion onto the verti
al modes of the heating.The for
ed shallow water equations 
an be solved now by proje
ting thefor
ing onto the paraboli
 
ylinder fun
tions. For example we 
an write

Q =

∞
∑

n=1

Qn(x, t)Dn(y)In order to simplify the presentation we now introdu
e non-dimensionalizationof our equations. Here we assume that the natural velo
ity s
ale is c and thenatural length s
ale is the equatorial radius of deformation a =
√

c/β. S
alingour variables by these we obtain the simpli�ed equations
Ut − yV = −hx

Vt + yU = −hy

ht + (Ux + Vy) = −sQ
(14)A further 
hange of variables is 
onvenient. We introdu
e the an
illaryvariables

q = h + U
r = h − U7



Adding and subtra
ting the �rst and third equations of (14) while retainingthe se
ond leads then easily to the equations
qt + qx + Vy − yV = −sQ
rt − rx + Vy + yV = −sQ

qy + yq + ry − yr + 2Vt = 0
(15)We now de
ompose all variables into their paraboli
 
ylinder fun
tion 
om-ponents whi
h we label with an integer supers
ript. Now a parti
ularly usefulset of relations for the paraboli
 
ylinder fun
tions are those of the raising andlowering operators:

(∂y + y)Dn(y) = 2nDn−1(y)
(∂y − y)Dn(y) = −Dn+1(y)It now follows easily from (15) that we have an in�nite set of 
onstant 
oef-�
ient linear equations for the variables qn, rn and V n :

qn
t + qn

x − V n−1 = −sQn

rn
t − rn

x + 2(n + 1)V n+1 = −sQn

2(n + 1)qn+1 − rn−1 + 2V n
t = 0

(16)where n = 0, 1, 2, 3, . . . and if supers
ripts are negative then the term van-ishes. These linear equations 
an be solved in a straightforward albeit tediousfashion on
e the Qn are 
omputed by beginning with the n = 0 versions andpro
eeding iteratively. In pra
ti
e a further approximation to do with zonals
ale is made (see below) before solutions are 
omputed.In terms of the solutions derived above, the modes q0 
orrespond with theKelvin waves while for n > 1 the triple (qn, rn−2, V n−1) 
orrespond with Rossbyand gravity/Poin
are waves seen in Figure 1 (the labelling in the Figure is fromthe V j in the triple sin
e the dispersion relation is derived for this variable).The pair (q1, V 0) is the mixed Rossby gravity wave.7 Linear response to diabati
 heatingAs we saw in Le
ture 2, the main driving for
e of the tropi
al 
ir
ulation isprovided by diabati
 heating 
aused primarily by latent heat release whi
h is a
onsequen
e of the large amount of pre
ipitation that o

urs in this region. We
onsider now the dynami
al 
onsequen
es of this heat engine.In the lower layers of the tropi
al atmosphere adjustment time s
ales aregenerally very rapid 
ompared to those in the o
ean and are typi
ally of the orderof days to weeks. Sin
e 
limati
 phenomenon su
h as El Nino and the Monsoono

ur on mu
h longer time s
ales (whi
h are really o
eani
 time s
ales) it is usefulto 
onsider the equilibrium or steady state response of the tropi
al atmosphere.A useful �rst model of this was proposed by Gill in 1980 [1℄. Here he 
onsidereda linearization about a state of rest (as we have done in previous le
tures) andequilibriated the response by means of the linear dissipation terms. In general8



the diabati
 heating that o

urs in moist 
onve
tion has a very deep stru
tureasso
iated with it and peaks in the mid-troposphere. For this reason we 
an
onsider as a reasonable approximation that the heating proje
ts predominantlyonto the �rst baro
lini
 mode of the atmosphere whi
h has a shallow water speed
c of around 40− 60ms−1. Su
h a mode has a verti
al velo
ity stru
ture peakingin mid-troposphere hen
e the reason for the approximate heating proje
tiononto this mode. Horizontal velo
ity and pressure/geopotential perturbationsare roughly the verti
al derivative of this and have opposite signs in the lowerand upper troposphere. The equations governing these perturbations on anequatorial β−plane 
an thus be written as

ǫU − βyV = −hx

ǫV + βyU = −hy

ǫh + c2(Ux + Vy) = −sQ
(17)where we are equilibriating the equations with equal Newtonian 
ooling andRayleigh fri
tion. Gill assumed that ǫ was of order (3−4days)−1 and 
ontendedthat this dissipation was 
aused by verti
al mixing pro
esses indu
ed by 
onve
-tive systems. In a
tual fa
t the Newtonian 
ooling term 
an only be as
ribed toradiative 
ooling whi
h has a signi�
antly longer time s
ale (order two weeks).Solutions are somewhat distorted with a more realisti
 
hoi
e but qualitativelyare similar to those we derive below. In order to easily obtain solutions Gillalso assumed that the zonal s
ale is large whi
h enabled the omission of the �rstterm in the se
ond equation of (17). Su
h an approximation 
an be shown tobe quite a

urate for for
ing with a large horizontal zonal s
ale. With this so
alled long wave approximation we 
an derive very similar equations to those in(16)2

(2n − 1)ǫqn − qn
x = −s

(

Qn−2/2 + (n − 1)Qn
)

rn−1 = 2(n + 1)qn+1

V n−1 = ǫqn + qn
x + sQn

(18)The Kelvin mode equation is obtained by setting n = 0 in the �rst equation:
ǫq0 + q0

x = −sQ0 (19)while the �rst (symmetri
) Rossby mode equation is obtained setting n = 2 :

3ǫq2 − q2
x = −s

(

Q0/2 + Q2
)

r0 = 4q2

V 1 = ǫq2 + q2
x + sQ2

(20)As 
an be easily shown the for
ing indu
es Kelvin and Rossby modes ofthe same sign. Solutions fall o� exponentially away from for
ing in oppositezonal dire
tions re�e
ting the fa
t that the two (long wave) modes propagate2The term Vt disappears from the third equation and partial derivatives with respe
t to tare repla
ed by produ
ts by the dissipation parameter ǫ. The long wave approximation alsoeliminates gravity waves. 9



in opposite dire
tions from the for
ing. An interesting �rst solution may beobtained by setting
Qs = AD0(y) sin

(πx

L

)

0 < x < L (21)and zero for other values of x. This for
ing represents 
losely the anomalouslatent heating for
ing during an El Nino event whi
h o

urs around the equatorin the international dateline region. Solutions are obtained in a straightforwardfashion from equations (19) and (20). The solution for pressure and wind issket
hed in Figure 4. Note the symmetri
 Rossby mode to the west of thefor
ing and the Kelvin mode to the east.

Figure 4: S
hemati
 of Gill solution to equatorial diabati
 heating.The observed 
ir
ulation anomalies typi
ally seen during an El Nino aredisplayed in Figure 5.
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Figure 5: Observed wind anomalies during an El Nino. The anomalous diabati
heating during su
h events looks like the idealized form 
hosen for the Gillmodel.The agreement is quite good given the simpli
ity of the model used. Noti
ethe 
y
lone doublet 
entered to the west of the for
ing and the strong zonalequatorial wind anomalies pointing down the equatorial pressure gradient.Referen
es[1℄ A.E. Gill. Some simple solutions for heat-indu
ed tropi
al 
ir
ulation. Quar-terly Journal of the Royal Meteorologi
al So
iety, 106(449):447�462, 1980.
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