Atmospheric Dynamics

Lecture 10: Tropical Dynamics

1 Introduction

The equatorial region differs fundamentally from the mid-latitudes in that the
Coriolis parameter vanishes on the equator. This implies that quasi-geostrophic
theory is inappropriate and the geostrophic flow transitions to a direct pressure
gradient flow on the equator. Additionally many phenomena in this region are
able to be understood (to first order at least) by the linearized equations. Since
the mean state is often not large our results from Lecture 6 are directly relevant.
The vertical analysis performed there still holds however we need to reconsider
the shallow water equation solutions.

2 The equatorial g-plane

In the tropics it is a reasonable approximation to set the Coriolis parameter
f =2Qsin ¢ to the approximate expression

[ =08y

where 8 = 2.3 x 107" m~'s~! is exact at the equator and approximately
constant for most of the tropics. y is the distance from the equator. The shallow
water equations now read

U — ByV = —hyg
Vi + ByU = —hy (1)
ht + CQ(UE + Vy) = 0

The usual vorticity equation can be obtained by subtracting the y derivative
of the first equation from the x derivative of the second. When the third equation
is used this becomes

(Uy—Vw—kCiQh)f—ﬁV:O

These four equations may be reduced to a single equation in V by applying
;—J@t to the first; C%att to the second; —C%ayt to the third and 0, to the fourth
(1). This is
3y
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(Vma: + Vyy)t + 5Vm - CiQV;Stt - % =0 (2)

This is a linear pde with coefficients only dependent on y due to the beta
effect i.e. the variation of the Coriolis parameter with latitude. General solutions



to these equations can be found as usual by separating variables (again) and
can be written as sums of terms of the form

V =V (y)exp (ikx — iwt) (3)

where we need to derive a dispersion relation for & and w. Substitution of
(3) into (2) leads to the equation
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Now the operator —0y, + f—ij is easily shown to be Hermitian and positive
and we again have a Sturm Liouville problem this time on an infinite domain.
The solutions to this eigenproblem are well known (those of you who have done
quantum mechanics will recognize this equation as the Schroedinger wave equa-
tion for the harmonic oscillator which has been much studied). The eigenvalues
are discrete and (obviously) bounded below and we have

w? kQ@ B

= " :Z(2n+1) for n=0,1,23...... (5)

In addition there is a solution which has V' = 0. Substitution of this in
(1) gives the dispersion relation w? = c?k? and the negative root here gives
unbounded solutions for U and h as y — oo so we are left with the additional
relation

w=kc (6)

The solutions to both dispersion relations are plotted in Figure 1.

The upper (i.e. high frequency) curves are gravity waves (qf Lecture 6); the
curves on the lower left hand side are Rossby waves (qf Lecture 7) while the
curve corresponding to (6) is for the so-called Kelvin wave'. We shall consider
all these solutions in more detail below.

The eigensolutions of (4) (as well as the additional V' = 0) are the well known
parabolic cylinder functions

Dy (&) = Du(y/B/cy) = exp (_52/2) Hy(§) (7)
where H,,(§) are the Hermite polynomials for which we have the following

Ho(§) = 1

Hy(§) = 2¢

Hy(&) = 462 —2 (8)
- 2nH,
Ay Tiln—1

an = an—l + O-5Hn+1

I The other solution which has n = 0 is called a mized Rossby-gravity wave since it resembles
the former for K — —oo and the latter for k — oo.
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Figure 1: Equatorial beta plane dispersion relation curves. The unit of frequency
is /B¢ while that of the wavenumber k is /(/c.



The eigensolutions satisfy the orthogonality relation

Note that we have introduced a natural scaling distance a = /¢/3 which is
known as the equatorial radius of deformation.

The first few parabolic cylinder functions are displayed in Figure 2.

Note that they are symmetric (about the equator) for n even and antisym-
metric for n odd. Solutions for V are proportional to these functions while the
solutions for U and h can be obtained by substituting for the V' solution back
in (1) and using (3), (8) and (7):

V = Cexp (ikx —iwt) Dy (§)
U = Cexplike —iwt) "Bl 4 ) Fhan(@)] 9)
h = Cexp (ikz — iwt) [nl/jﬁ:@l(&) - (n+1)iﬁ?}:+1(£)}

Notice that when U and h are symmetric then V is antisymmetric and
conversely. The Kelvin wave solution has V = 0 and U and h proportional to
Dy (&) (see below for further detail). We now consider the solutions in detail.

3 Rossby waves

The low frequency solutions of the dispersion relation (5) are the Rossby waves
which we met in Lecture 7 and depend for their existence on the fact that the
Coriolis parameter varies with latitude (i.e. that 8 # 0). Their approximate
dispersion relation can be obtained by neglecting the term involving w? in (5)
and solving for w :
—Bk
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(10)

Note the similarity to dispersion equation derived in Lecture 7 for the quasi-
2
geostrophic equation (set l%—ﬁ% = w) The limits of |k| small (long waves)
and |k| large (short waves) are of significant interest physically. In the former
case we can neglect k? from the denominator in (10) and obtain

—ck
w =
2n+1

(11)

which is nondispersive and indicates that these waves propagate towards
the west. Note that as n increases this speed slows. The first (or gravest)
symmetric Rossby wave has n = 1 and the long wave horizontal structure is
plotted in Figure 3. Note the cyclonic couplet structure. It travels at a speed
which is one third of the shallow water velocity.



Figure 2: Parabolic cylinder functions. Top panel shows the symmetric functions
and the bottom the anti-symmetric functions.
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Figure 3: Gravest equatorial Rossby wave schematic.

Another very important property of Rossby waves is that they have a max-
imum frequency. This may be obtained by finding the turning point of w in
relation (10):

2 Be

max = 40on 1 1)

Note how this value increases with shallow water speed and decreases as n
increases i.e. as the waves have more off-equatorial projection.

w

4 Kelvin waves
These waves have no meridional velocity and satisfy the nondispersive relation
w=kc

which means they propagate towards the east with the shallow water speed.
Their zonal velocity and h structure is given by simply substituting V' = 0 into
(1) and using (3):

U = Upexp (ikx —iwt) Do(&)
h = cUyexp (ikx — iwt) Do(€)

Notice that these waves are trapped in the region of the equator (scaled by
the deformation radius). This was the reason physically for their absence from
the quasi-geostrophic equations.



5 Gravity waves

An approximate dispersion relation for these waves can be obtained by assuming
w large in the dispersion relation (5). If this is done then the third term on the
left hand side may be neglected and so we obtain

w? = ¢ (k‘2 + §(2n + 1)) (12)
This relation should be compared to that which was derived in Lecture 7.
The comparison is formally the same as for Rossby waves.

6 Forced equations

Diabatic heating of the atmosphere can be taken into account in the linearized
primitive equations by incorporating a forcing term into the temperature equa-
tion (see Lecture 5 equation 4). When the separation of variables occurs as in
Lecture 7 then each vertical mode acquires a forcing term obtained by project-
ing the heating onto the vertical mode eigenfunctions for temperature (vertical
velocity eigenfunction multiplied by S(p)). This projection coefficient then ap-
pears in the shallow water equations which describe the horizontal flow. Thus
we have

Ui — ﬁyv = —hg
Vi + ByU = _hy (13)
h/t + CQ(UL‘ + ‘/;J) = _SQ

where @ is the diabatic heating. The coefficient s is determined by the
projection onto the vertical modes of the heating.

The forced shallow water equations can be solved now by projecting the
forcing onto the parabolic cylinder functions. For example we can write

oo

Q=Y Qul(z.t)Dn(y)

n=1

In order to simplify the presentation we now introduce non-dimensionalization
of our equations. Here we assume that the natural velocity scale is ¢ and the
natural length scale is the equatorial radius of deformation a = 1/¢/3. Scaling
our variables by these we obtain the simplified equations

Ut - yV - _hm
Vi +yU = —hy (14)
h/t + (UL‘ + ‘/y) = _SQ

A further change of variables is convenient. We introduce the ancillary

variables
q h+U

r = h-U



Adding and subtracting the first and third equations of (14) while retaining
the second leads then easily to the equations

Gt +qe+Vy—yV = —sQ
TE— Ty + Vvy + yV = _SQ (15)
Qy +yq+ry —yr+2V, = 0

We now decompose all variables into their parabolic cylinder function com-
ponents which we label with an integer superscript. Now a particularly useful
set of relations for the parabolic cylinder functions are those of the raising and
lowering operators:

(Oy +y) Dnly) = 2nDp_1(y)
(8y —y)Dn(y) = —Dny1(y)

It now follows easily from (15) that we have an infinite set of constant coef-
ficient linear equations for the variables ¢”, ™ and V" :

Q? + q;L _ Vn—l — —SQ"
v — 7?4 2(n 4 1)Vt = —sQ" (16)
2(n +1)g"+tt —pn=l 42V = 0
where n = 0,1,2,3,... and if superscripts are negative then the term van-

ishes. These linear equations can be solved in a straightforward albeit tedious
fashion once the Q" are computed by beginning with the n = 0 versions and
proceeding iteratively. In practice a further approximation to do with zonal
scale is made (see below) before solutions are computed.

In terms of the solutions derived above, the modes ¢° correspond with the
Kelvin waves while for n > 1 the triple (¢", 7"~ 2, V"~1) correspond with Rossby
and gravity /Poincare waves seen in Figure 1 (the labelling in the Figure is from
the V7 in the triple since the dispersion relation is derived for this variable).
The pair (¢*, V?) is the mixed Rossby gravity wave.

7 Linear response to diabatic heating

As we saw in Lecture 2, the main driving force of the tropical circulation is
provided by diabatic heating caused primarily by latent heat release which is a
consequence of the large amount of precipitation that occurs in this region. We
consider now the dynamical consequences of this heat engine.

In the lower layers of the tropical atmosphere adjustment time scales are
generally very rapid compared to those in the ocean and are typically of the order
of days to weeks. Since climatic phenomenon such as El Nino and the Monsoon
occur on much longer time scales (which are really oceanic time scales) it is useful
to consider the equilibrium or steady state response of the tropical atmosphere.
A useful first model of this was proposed by Gill in 1980 [1]. Here he considered
a linearization about a state of rest (as we have done in previous lectures) and
equilibriated the response by means of the linear dissipation terms. In general



the diabatic heating that occurs in moist convection has a very deep structure
associated with it and peaks in the mid-troposphere. For this reason we can
consider as a reasonable approximation that the heating projects predominantly
onto the first baroclinic mode of the atmosphere which has a shallow water speed
c of around 40 — 60ms~!. Such a mode has a vertical velocity structure peaking
in mid-troposphere hence the reason for the approximate heating projection
onto this mode. Horizontal velocity and pressure/geopotential perturbations
are roughly the vertical derivative of this and have opposite signs in the lower
and upper troposphere. The equations governing these perturbations on an
equatorial S—plane can thus be written as

eU — ByV = —hy
eV + pyU = —hy (17)
eh+ AU, +V,) = —sQ

where we are equilibriating the equations with equal Newtonian cooling and
Rayleigh friction. Gill assumed that e was of order (3 —4days)~! and contended
that this dissipation was caused by vertical mixing processes induced by convec-
tive systems. In actual fact the Newtonian cooling term can only be ascribed to
radiative cooling which has a significantly longer time scale (order two weeks).
Solutions are somewhat distorted with a more realistic choice but qualitatively
are similar to those we derive below. In order to easily obtain solutions Gill
also assumed that the zonal scale is large which enabled the omission of the first
term in the second equation of (17). Such an approximation can be shown to
be quite accurate for forcing with a large horizontal zonal scale. With this so
called long wave approximation we can derive very similar equations to those in

(16)*

2n—1)eqg™ — ¢ = -—s (Q”_Q/Z +(n— 1)Q")
rn—l = 2(n+1)g" ! (18)
anl — 6qn +q;7, +8Qn

The Kelvin mode equation is obtained by setting n = 0 in the first equation:
e’ +qy = —sQ° (19)

while the first (symmetric) Rossby mode equation is obtained setting n = 2 :

3e’ —q7 = —s(Q°/2+@Q%)
r0 = 4q? (20)
Vi = e +q+sQ?

As can be easily shown the forcing induces Kelvin and Rossby modes of
the same sign. Solutions fall off exponentially away from forcing in opposite
zonal directions reflecting the fact that the two (long wave) modes propagate

2The term V; disappears from the third equation and partial derivatives with respect to ¢
are replaced by products by the dissipation parameter e. The long wave approximation also
eliminates gravity waves.



in opposite directions from the forcing. An interesting first solution may be
obtained by setting

Qs = ADo(y) sin (%) O<z<L (21)

and zero for other values of x. This forcing represents closely the anomalous
latent heating forcing during an El Nino event which occurs around the equator
in the international dateline region. Solutions are obtained in a straightforward
fashion from equations (19) and (20). The solution for pressure and wind is
sketched in Figure 4. Note the symmetric Rossby mode to the west of the
forcing and the Kelvin mode to the east.
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Figure 4: Schematic of Gill solution to equatorial diabatic heating.

The observed circulation anomalies typically seen during an El Nino are
displayed in Figure 5.
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Figure 5: Observed wind anomalies during an El Nino. The anomalous diabatic
heating during such events looks like the idealized form chosen for the Gill
model.

The agreement is quite good given the simplicity of the model used. Notice

the cyclone doublet centered to the west of the forcing and the strong zonal
equatorial wind anomalies pointing down the equatorial pressure gradient.
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