Lecture 1: Introduction to Statistical Physics and
Course Description

1 Basic concepts

The great success of physics in the past four centuries has been the formula-
tion of equations which describe the motion of individual particles or objects.
This is the basis of the study of dynamics whether it be classical, quantum or
relativistic. In practical situations however one is frequently confronted with a
multitude of particles all interacting with each other. In principle, the complete
dynamical solution for this complex system can be worked out from first princi-
ples and then solved using a computer. However when the number of particles
(or degrees of freedom more generally) exceeds a certain level this approach
becomes completely impractical. Moreover one is often not at all interested in
the location of an individual particle from this assembly of objects. Instead one
is usually interested in only the “total” behavior of the assembly. For example,
the total energy of the system or other gross properties. A concrete example
of this situation is provided by a gas volume. For a unit volume (1m?) this
consists of around 6 x 102* molecules colliding with both the container walls
and themselves. We are not interested in the position of an individual molecule
instead we are interested in things like the “temperature” which is proportional
to its total energy.

We need therefore a method for passing from the individual description of
the system to the large scale and useful description of the entire system. This
is the central practical problem of statistical physics. Rather interestingly it
is often the case that the laws governing the large scale are rather universal
and not particularly dependent on the specific dynamics controlling individual
particles. Such laws are known as the system thermodynamics. Clearly however
we need to relate those laws in some way to what is happening to the individual
particles. Given that the large scale quantities of interest are typically averages
of basic dynamical variables for the individual particles this process is funda-
mentally statistical in nature. Statistical physics is the method for making this
transition and thereby justifying the empirical laws of thermodynamics. The
subject had two great pioneers in the late 19th and early 20th century namely
Ludwig Boltzmann in Austria and Josiah Willard Gibbs in the US. Their con-
ceptual framework still stands today as a great (and unfinished) achievement in
mathematical physics.

2 Microstates

Consider a large number of particles and assume initially that their dynamics
are controlled by the classical equations of Newton, Lagrange and Hamilton.
The state of such a system can be specified precisely at a particular time by
specifying each particle’s position and momentum. From these the future entire



state of the system can be determined precisely!. The set of coordinates involved
for a system of IV particles may be written as
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This space of dimension 2N is known as the phase space of the system
and the coordinates specify the system microstate. Note that when one makes
the transition to describing the system using quantum mechanics this precise
description is no longer possible since the uncertainty principle there asserts
that
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which implies that the volume elements of the phase space have an effective
lower limit of
2N
Vinin = (1/2)

This effectively fixes a lower limit of resolution for microstates. It is also,
as we shall see below, involved in the definition of entropy, a central concept in
statistical physics. In this course we shall only deal in passing with quantum
mechanics in order to keep the presentation clear. Quantum mechanics can
become important under certain circumstances which we do not consider for
pedagogical reasons.

The above microstate description of a system could refer to an entire closed
system or to a (open) subsystem of a much larger closed system. The latter
subsystem approach proves more useful ultimately as we shall see later in the
course.

Now consider a very long time realization of this system. In general, given
sufficient time T" we expect the system will pass through any specified range of
coordinates

a certain number of times. Suppose the total amount of time spent in this
subregion is At then we can consider the limit
I At
w= lim —
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We assume that such a limit exists in general and regard it as the probability
the system will be in the specified phase space volume at a particular time. By
refining the phase space volume we can define a limiting phase space probability
density function p:
dw = o(q, p)dqdp

where clearly we require
/ o(q,p)dqdp =1

INotice that we need more than just the particle positions since Newton’s law of motion
is a second order differential equation.



Note that the definition for ¢ above does not depend on the particular initial
conditions chosen since it refers to a limiting infinite time interval 7" in order
to describe the density. A vital problem we shall face is working out what
the functional form of g is precisely. Once we have it however we will then
have a statistical as opposed to deterministic description of the system and
this will constitute what is called equilibrium statistical mechanics. A central
contribution of Gibbs was in deducing that the form of ¢ was as follows

0= Cexp(—ail; (q,p)) (1)

where I; are the time invariant quantities for the dynamical system and the
«; real numbers. Such a deduction will be looked at more closely in Lecture
2. It has been verified empirically in a large range of different systems and the
distribution is commonly called the Gibbs distribution or measure. In many cir-
cumstances the only invariant of importance turns out to be the system energy.

3 Macrostates

Now the large scale variables of interest f for our subsystem, for example the
subsystem energy, will be functions of the microstate coordinates:

and these will fluctuate as time progresses and we can regard this variable
then as a random variable with statistics controlled by the density ¢. Thus the
long time average of this random variable will for instance be given by

f_:/f(q,p)g(q,p)dqdp

If the actual value of f is very close to f then we say that the system is in
equilibrium. If the system is externally perturbed in such a way as to modify f
then empirically if we leave the system alone for a sufficient time then f — f and
the time involved is termed the non-equilibrium relaxation time. Note also that
because the system is open the system energy can fluctuate however the mean
value is fixed. For “large” systems in equilibrium, as we shall discuss in Lecture
2, the fluctuations in energy relative to this mean value are very small i.e. the
distribution for energy is very sharply peaked at the mean value. Such mean
values of large scale quantities specify the so-called macrostates of the system.
They are also commonly called thermodynamical quantities and we shall discuss
them further in Lectures 3 and 4. The fluctuations about the mean values are
also of interest and these will be discussed further in Lectures 7 and 10.

4 Entropy

The microstates are related to the macrostates in a fundamental way through
the concept of entropy. We follow a heuristic and intuitive definition of this



concept due to Landau and Lifshitz: Consider the case that ¢ depends only on
the total energy E of the system and thus macrostates are defined by specifying
E. As the equilibrium subsystem evolves in time the total energy will execute
a tight random path very close to the mean value E. In general the microstates
(q,p) will be confined to a very particular sub-volume AV of the total 2N
dimensional space in order that this be the case.

We can derive an expression for AV by considering the one dimensional
density W (E)? which gives the probability that the energy of the system lies in
some range of values. Since the full system density o is constant if the energy
is held at a fixed value then we can write

W(Eo)0E = o(E(p,q))Van—1(E(p,q) = Eo)dE (2)

where Vony_1 is the 2N — 1 dimensional volume of the usually compact sub-
manifold of phase space given by the contraint E(p,q) = Ey and JE is some
small range of energy about Ey. The volume mentioned usually increases with
the energy defining it. Now the energy density W (E) is very sharply peaked
meaning that energy values are typically very close to E and the typical range
of such values AFE about the peak value can be defined by

W(E)AE =1

For a Gaussian® W it is trivial to show that AE = /2wsd(E). Using (2) we
can define a sub-volume of phase space where the system typically resides by

AV =Van_1(E(p, q) = Eo)AE
and evidently now

1
AV o(B) (3)
Thus intuitively AV is a measure of the “number” of microstates which are
consistent with a given macrostate. One problem with such a measure is that
it is a dimensional quantity with the same units as action? raised to the power
N. Given that quantum mechanics sets a fundamental lower limit on allowable
phase space volumes it is conventional to consider instead the dimensionless
quantity:
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This statistical weight, is used to define the macrostate entropy via the
equation

S =log——=
& (2rh)™

2Note that this density is different from o(F(p, q)) which is a density for the full phase
space i.e. it is of dimension 2N

3This is usually a very good approximation for the fluctuation distribution of energy due
to the central limit theorem.

4Units of action are Joule-second.



Such a definition can be easily extended unchanged conceptually to the quan-
tum rather classical case. Entropy can be thought of then intuitively as the
logarithm of the number of microstates consistent with a given macrostate.

It is interesting to consider a different expression for it given the deduction
of Gibbs that

log o(E) = a+bE

It follows from (3) and (4) that since the logarithm of g is linear in F that®

S = —log {(%h)” o(E)
= —/dqdpg log o — N log (27h)

the first term as we shall see in the next lecture is the information theoretic
entropy of Shannon. This deep connection between information theory and
statistical physics shall be emphasized in this course. For equilibrium systems
this entropy is also referred to as the Gibbs entropy.

Suppose we have a series of subsystems making up a larger closed system.
How should one define the statistical weight and hence entropy of the com-
plete system? Given that in any subsystem any microstate consistent with the
macrostate could be chosen a little thought shows that if molecules in differ-
ent subsystems are approximately statistically indpendent, the total statistical
weight should be simply the product of the individual weights since one is really
considering the tensor product of phase spaces. The definition of entropy as the
logarithm of the statistical weight then ensures that the total entropy of the
entire system is the sum of the entropies of the individual subsystems. Such a
property of a variable in a compound system is desirable and makes it additive.
The same property also obviously holds for the conserved quantity of energy as
well as the particle number.

Entropy was originally introduced in the empirical subject of thermodynam-
ics by Clausius in 1865. It was a central concept in this discipline. Boltzmann
showed how it related to a molecular view of matter via the idea of microstates®.
He thus provided a physical justification for an earlier empirical concept.

5 Course overview

The laws governing macrostates are known collectively as thermodynamics. A
comprehensive overview of this large scale description is provided in Lectures 3
and 4. The justification of these laws is provided by the subject of equilibrium
statistical mechanics which we study in Lectures 5 and 6. As we saw in the
previous section systems in equilibrium do not have absolutely steady large

5The overbar is the expectation with respect to the Gibbs density

6The definition of entropy as proportional to the logarithm of the number of microstates
consistent with a given macrostate is inscribed on his tombstone in the Central Cemetery of
Vienna.



scale variables. These fluctuations are studied in Lectures 7 and 10. Systems
not in equilibrium are less well understood. Nevertheless some progress has been
made on this rather important subject which we study in Lectures 8 through
11. The course has been prepared from a number of well known texts in the
area which include:

1. Statistical Physics by Landau and Lifshitz

2. Equilibrium and Non-equilibrium Statistical Mechanics by Mazenko (2
volumes).

3. Foundations of Statistical Mechanics. A deductive treatment by Oliver
Penrose.

4. Equilibrium and Non-equilibrium Statistical Mechanics by C.M. Van Vliet

The approach we follow is relatively non-rigorous as an intuitive introduction is
the aim. There are however rigorous presentation of this field. Two examples
are

1. Entropy, Large Deviations, and Statistical Mechanics by Ellis
2. Time’s Arrow by Mackey

The latter reference focusses primarily on non-equilibrium behaviour and dy-
namical systems while the former is a treatment of equilibrium systems.



