Problems on symmetric functions of roots of a polynomial equation.

In what follows, $a_{1}, a_{2}, \ldots a_{n}$ are the roots of the equation

$$
\left(z-a_{1}\right) \cdots\left(z-a_{n}\right)=z^{n}-\alpha_{1} z^{n-1}+\cdots+(-1)^{p} \alpha_{p} z^{n-p}+\cdots+(-1)^{n} \alpha_{n}=0
$$

The α_{i} are the elementary symmetric functions of the roots:
(1) $\alpha_{1}=\sum_{i=1}^{n} a_{i}=\sum a_{1}$. (This unorthodox notation uses a typical term a_{1} and is useful.)
(2) $\alpha_{2}=\sum_{i<j}^{n} a_{i} a_{j}=\sum a_{1} a_{2}$.
..
(n) $\alpha_{n}=a_{1} a_{2} \cdots a_{n}$.

In addition, we define the functions

$$
S^{k}=\sum_{i=1}^{n} a_{i}^{k}=\sum a_{1}^{k}
$$

S_{k} is defined for all non-negative integers. If all $a_{i} \neq 0$ for all i, or equivalently if $\alpha_{n} \neq 0, S_{k}$ is defined for all integers, positive, negative and zero.

In lecture, we computed S_{2} in terms of the elementary symmetric functions. Briefly, the method:

$$
\alpha_{1}^{2}=\left(a_{1}+\ldots\right)\left(a_{1}+\ldots\right)=\sum a_{1}^{2}+2 \sum a_{1} a_{2}=S_{2}+2 \alpha_{2}
$$

so $S_{2}=\alpha_{1}^{2}-2 \alpha_{2}$. (It is critical that you understand where the factor 2 comes in!)
Here are some problems.

1. Express S_{3} in terms of the elementary symmetric functions. (Done in lecture.)
2. Express $\sum a_{1}^{2} a_{2}$) in terms of the elementary symmetric functions. This is, of course, $\sum_{i, j=1}^{n} a_{i}^{2} a_{j}$. Here we do not have $i<j$ because, for example $a_{1}^{2} a^{2} \neq a_{2}^{2} a_{1}$.
3. If $\alpha_{n} \neq 0$, express $\sum 1 / a_{1}$ in terms of the elementary symmetric functions.
4. If $\alpha_{n} \neq 0$, express $\sum a_{1} / a_{2}$ in terms of the elementary symmetric functions.
5. Express $\sum a_{1}^{3} a_{2}$ in terms of the elementary symmetric functions.

Continued on next page.

In 6-9, take $n=3$, and let a, b, c be the roots of the equation $x^{3}+p x+q=0$.
6. Find $\left.(a-b)^{2}+(b-c)^{2}+c-a\right)^{2}$
7. Show that $S_{n+3}=-p S_{n+1}-q S_{n}$ for $n \geq 0$.
8. Using the above recursion and the values of S_{0}, S_{1}, S_{2}, find S_{3}, S_{4}, S_{5} as functions of the coefficients p and q.
9. The recursion in 7 is valid for all integers n if $q \neq 0$. Why? Using this fact, compute

$$
1 / a+1 / b+1 / c, 1 / a^{2}+1 / b^{2}+1 / c^{2}, \text { and } 1 / a^{3}+1 / b^{3}+1 / c^{3} .
$$

(Assume $p \neq 0$.)
10. In the quadratic $x^{2}+p x+q=0$, let the roots be a and b. Using the technique of Exercise 7, find a recursion relating S_{n+2}, S_{n+1} and S_{n}. In particular, find $a^{5}+b^{5}$ by this method. 11. As in 10 , but find $1 / a^{4}+1 / b^{4}$. Do 2 ways. (Assume $q \neq 0$.)
12. If $r+s=1$ and $r^{4}+s^{4}=4$, what is $r^{3}+s^{3}$?
13. If $r+s+t=1, r^{2}+s^{2}+t^{2}=2$, and $r^{3}+s^{3}+t^{3}=3$, what is the value of $r^{4}+s^{4}+t^{4}$?

