Putnam Exam: Series problems

These are from 1985 through 2002.
2002A6. Fix an integer $b \geq 2$. Let $f(1)=1, f(2)=2$, and for each $n \geq 3$, define $f(n)=n f(d)$, where d is the number of base- b digits of n. For which values of b does

$$
\sum_{n=1}^{\infty} \frac{1}{f(n)}
$$

converge?
2001B3. For any positive integer n, let $\langle n\rangle$ denote the closest integer to \sqrt{n}. Evaluate

$$
\sum_{n=1}^{\infty} \frac{2^{\langle n\rangle}+2^{-\langle n\rangle}}{2^{n}}
$$

2000A1. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \ldots are positive real numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?

1999A3. Consider the power series expansion

$$
\frac{1}{1-2 x-x^{2}}=\sum_{n=0}^{\infty} a_{n} x^{n} .
$$

Prove that, for each integer $n \geq 0$, there is and integer m such that

$$
a_{n}^{2}+a_{n+1}^{2}=a_{m}
$$

1999A4. Sum the series

$$
\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \frac{m^{2} n}{3^{m}\left(n 3^{m}+m 3^{n}\right)} .
$$

1999B3. Let $A=\{(x, y): 0 \leq x, y<1\}$. For $(x, y) \in A$, let

$$
S(x, y)=\sum_{\frac{1}{2} \leq \frac{m}{n} \leq 2} x^{m} y^{n}
$$

where the sum ranges over all pairs (m, n) of positive integers satisfying the indicated inequalities. Evaluate

$$
S(x, y)=\sum_{\substack{(x, y) \rightarrow(1,1) \\(x, y) \in A}}\left(1-x y^{2}\right)\left(1-x^{2} y\right) S(x, y)
$$

1996B4. For any square matrix A, we can define $\sin A$ by the usual power series

$$
\sin A=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} A^{2 n+1}
$$

Prove or disprove: there exists a 2 matrix A with real entries such that

$$
\sin A=\left(\begin{array}{cc}
1 & 1996 \\
0 & 1
\end{array}\right)
$$

1990B2. Prove that for $|x|<1,|z|>1$,

$$
1+\sum_{j=1}^{\infty}\left(1+x^{j}\right) \frac{(1-z)(1-z x)\left(1-z x^{2}\right) \cdots\left(1-z x^{j-1}\right)}{(z-x)\left(z-x^{2}\right)\left(z-x^{3}\right) \cdots\left(z-x^{j}\right)}=0
$$

1989A6. Let $\alpha=1+a_{1} x+a_{2} x^{2}+\ldots$ be a formal power series with coefficients in the field of two elements. Let

$$
a_{n}= \begin{cases}1 & \text { if every block of zeros in the binary expansion of } \alpha \\ \text { has an even number of zeros in the block, } \\ 0 & \text { otherwise. }\end{cases}
$$

(For example, $a_{36}=1$ because $36=100100_{2}$, and $a_{20}=0$ because $20=10100_{2}$.) Prove that $\alpha^{3}+x \alpha+1=0$.

1988A3. Determine, with proof, the set of real numbers x for which

$$
\sum_{n=0}^{\infty}\left(\frac{1}{n} \csc \frac{1}{n}-1\right)^{x}
$$

converges.
1988B4. Prove that if $\sum_{n=1}^{\infty} a_{n}$ is a convergent series of positive real numbers, then so is $\sum_{n=1}^{\infty}\left(a_{n}\right)^{n /(n+1)}$.

1987A6. For each positive integer n, let $a(n)$ be the number of zeros in the base 3 representation of n. For which positive real numbers x does the series

$$
\sum_{n=1}^{\infty} \frac{x^{a(n)}}{n^{3}}
$$

converge?

