Putnam Exam: Number Theory problems

These are from 1985 through 2002.
2002B5. A palindrome in base b is a positive integer whose base- b digits read the same backwards and forwards; for example, 2002 is a 4 -digit palindrome in base 10 . Note that 200 is not a palindrome in base 10 , but it is a 3 -digit palindrome 242 in base 9 , and 404 in base 7. Prove that there is an integer which is a 3 digit palindrome in base b for at least 2002 different values of b.

2001A5. Prove that there are unique positive integers a, n such that $a^{n+1}-(a+1)^{n}=2001$.
2000A2. Prove that there exists infinitely many integers n such that $n, n+1, n+2$ are each the sum of two squares. [Example: $0=0^{1}+0^{2}, 1=0^{2}+1^{2}$, and $2=1^{2}+1^{2}$.

2000B1. Let a_{j}, b_{j}, c_{j} be integers for $1 \leq j \leq N$. Assume, for each j, at least one of a_{j}, b_{j}, c_{j} is odd. Show that there exist integers r, s, t such that $r a_{j}+s b_{j}+t c_{j}$ is odd for at least $4 N / 7$ values of $j, 1 \leq j \leq N$.

2000B2. Prove that the expression

$$
\frac{\operatorname{gcd}(m, n)}{n}\binom{n}{m}
$$

is an integer for all pairs of integers $n \geq m \geq 1$.
1997B5. Prove that for $n \geq 2$,

$$
\left.\left.2^{2 \cdot{ }^{\cdot{ }^{2}}}\right\} n \equiv 2^{2 \cdot{ }^{\cdot{ }^{2}}}\right\} n-1 \quad(\bmod n)
$$

1996A5. If p is a prime number greater than 3 and $k=[2 p / 3]$, prove that the sum

$$
\binom{p}{1}+\binom{p}{2}+\cdots+\binom{p}{k}
$$

of binomial coefficients is divisible by p^{2}.
1994B6. For each integer a, set

$$
n_{a}=101 a-100 \cdot 2^{a} .
$$

Show that for $0 \leq a, b, c, d \leq 99, n_{a}+n_{b} \equiv n_{c}+n_{d}(\bmod 10100)$ implies $\{a, b\}=\{c, d\}$.

1993B1. Find the smallest positive integer n such that for every integer m with $0<m<$ 1983, there exists and integer k for which

$$
\frac{m}{1993}<\frac{k}{n}<\frac{m+1}{1994}
$$

1992A3. For a given positive integer m, find all triples (n, x, y) of positive integers, with n relatively prime to m, which satisfy $\left(x^{2}+y^{2}\right)^{m}=(x y)^{n}$.

1988B1. A composite (positive integer) is a product $a b$ with a and b not necessarily distinct integers in $\{2,3,4, \ldots)\}$. Show that every composite integer is expressible as $x y+x z+y z+1$, with x, y, and z positive integers.

1988B6. Prove that there exist an infinite number of ordered pairs (a, b) of integers such that for every positive integer t the number $a t+b$ is triangular if and only if t is a triangular number. (The triangular numbers are the $t_{n}=n(n+1) / 2$ with n in $\{0,1,2, d o t s\}$.)

1986A2. What is the units (i.ie. rightmost) digit of $\left[\frac{10^{2000}}{10^{100}+3}\right]$? Here $[x]$ is the greatest integer $\leq x$.

1985A4. Define a sequence $\left\{a_{i}\right\}$ by $a_{1}=3$ and $a_{i+1}=3^{a_{i}}$ for $i \geq 1$. Which integers between 00 and 99 inclusive occur as the last two digits in the decimal expansion of infinitely many a_{i} ?

