Putnam Integration Problems.

These are all from 1985-2000.
A4-2000. Show that the improper integral

$$
\lim _{B \rightarrow \infty} \int_{0}^{B} \sin (x) \sin \left(x^{2}\right) d x
$$

converges.
A5-1999. Prove that there is a constant C such that, if $p(x)$ is a polynomial of degree 1999, then

$$
p(0) \leq C \int_{-1}^{1}|p(x)| d x
$$

A2-1995. For what pairs (a, b) of positive real numbers does the improper integral

$$
\int_{b}^{\infty}(\sqrt{\sqrt{x+a}-\sqrt{x}}-\sqrt{\sqrt{x}-\sqrt{x-b}}) d x
$$

converge?
A5-1993. Show that

$$
\int_{-100}^{-10}\left(\frac{x^{2}-x}{x^{2}-3 x+1}\right)^{2} d x+\int_{\frac{1}{101}}^{\frac{1}{11}}\left(\frac{x^{2}-x}{x^{2}-3 x+1}\right)^{2} d x+\int_{\frac{101}{100}}^{\frac{11}{10}}\left(\frac{x^{2}-x}{x^{2}-3 x+1}\right)^{2} d x
$$

is a rational number.
B4-1993. The function $K(x, y)$ is positive and continuous for $0 \leq x \leq 1,0 \leq y \leq 1$, and the functions $f(x)$ and $g(x)$ are positive and continuous for $0 \leq x \leq 1$. Suppose that for all $x, 0 \leq x \leq 1$,

$$
\int_{0}^{1} f(y) K(x, y) d y=g(x) \text { and } \int_{0}^{1} g(y) K(x, y) d y=f(x) .
$$

Show that $f(x)=g(x)$ for $0 \leq x \leq 1$.
A2-1992. Define $C(\alpha)$ to be the coefficient of x^{1992} in the power series expansion of $(1+x)^{\alpha}$. Evaluate

$$
\int_{0}^{1} C(-y-1)\left(\frac{1}{y+1}+\frac{1}{y+2}+\frac{1}{y+3}+\cdots+\frac{1}{y+1992}\right) d y
$$

Continued on other side.

A5-1991. Find the maximum value of

$$
\int_{0}^{y} \sqrt{x^{4}+\left(y-y^{2}\right)^{2}} d x
$$

for $0 \leq y \leq 1$.
B1-1990. Find all real-valued differentiable functions f on the real line such that for all x

$$
(f(x))^{2}=\int_{0}^{x}\left((f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right) d t+1990
$$

A2-1989. Evaluate $\int_{0}^{a} \int_{0}^{b} e^{\max \left\{b^{2} x^{2}, a^{2} y^{2}\right\}} d y d x$ where a and b are positive.
B3-1989. Let f be a function on $[0, \infty)$, differentiable and satisfying

$$
f^{\prime}(x)=-3 f(x)+6 f(2 x)
$$

for $x>0$. Assume that $|f(x)| \leq e^{-\sqrt{x}}$ for $x \geq 0$ (so that $f(x)$ tends rapidly to 0 and x increases). For n a non-negative integer, define

$$
\mu_{n}=\int_{0}^{\infty} x^{n} f(x) d x
$$

(sometimes called the nth moment of f).
a. Express μ_{n} in terms of μ_{0}.
b. Prove that the sequence $\left\{\mu_{n} \frac{3^{n}}{n!}\right\}$ always converges, and that the limit is 0 only if $\mu_{0}=0$.

B1-1987. Evaluate $\int_{2}^{4} \frac{\sqrt{\ln (9-x)} d x}{\sqrt{\ln (9-x)}+\sqrt{\ln (x+3)}}$
A5-1985. Let $I_{m}=\int_{0}^{2 \pi} \cos (x) \cos (2 x) \ldots \cos (m x) d x$. For which integers $m, 1 \leq m \leq 10$, is $I_{m} \neq 0$?

B5-1985. Evaluate $\int_{0}^{\infty} t^{-1 / 2} e^{-1985\left(t+t^{-1}\right)} d t$. You may assume that $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi}$.

