Mini Putnam Exam I

These are all taken from prevvious Putnam Exams.

1. Is $\sqrt{2}$ the limit of a sequence of numbers of the form $\sqrt[3]{n}-\sqrt[3]{m},(n, m=0,1,2, \ldots)$? Justify your answer.

2 Let \mathbf{A} and \mathbf{B} be different $n \times n$ matrices with real entries. If $\mathbf{A}^{3}=\mathbf{B}^{3}$ and $\mathbf{A}^{2} \mathbf{B}=\mathbf{B}^{2} \mathbf{A}$, can $\mathbf{A}^{2}+\mathbf{B}^{2}$ be invertible?

3 Suppose f and g are non-constant, differentiable, real-valued functions defined on $(-\infty, \infty)$. Furthermore, suppose that for every pair of real numbers x and y,

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =f(x) g(y)+g(x) f(y)
\end{aligned}
$$

If $f^{\prime}(0)=0$, prove that $(f(x))^{2}+(g(x))^{2}=1$ for all x.
4 Find all positive integers that are within 250 of exactly 15 perfect squares. (Note: A perfect square is the square of an integer; that is a member of the set $\{0,1,4,9,16, \ldots\}$. a is within n of b if $b-n \leq a \leq b+n$.)

5 What is the units (i.e., the rightmost) digit of $\left[\frac{10^{20000}}{10^{100}+3}\right]$? Here $[x]$ is the greatest integer $\leq x$.

6 Let r and s be positive integers. Derive a formula for the number of ordered quadruples (a, b, c, d) of positive integers such that

$$
3^{r} \cdot 5^{s}=\operatorname{lcm}[a, b, c]=\operatorname{lcm}[a, b, d]=\operatorname{lcm}[a, c, d]=\operatorname{lcm}[b, c, d]
$$

The answer should be a function of r and s. Note that $\operatorname{lcm}[x, y, z]$ denotes the least common multiple of x, y, z.

7 For which real numbers c is $\left(e^{x}+e^{-x}\right) / 2 \leq e^{c x^{2}}$ for all real x ?
8 For which real numbers a does the sequence defined by the initial condition $u_{0}=a$ and the recursion $u_{n+1}=2 u_{n}-n^{2}$ have $u_{n}>0$ for all $n \geq 0$? (Express the answer in the simplest form.)

9 Find the area of a convex octagon that is inscribed in a circle and has four consecutive sides of length 3 units and the remaining fours sides of length 2 units. Give the answer in the form $r+s \sqrt{t}$ with r, s, and t positive integers.

