Some Putnam problems.

Here is a mini-exam for you, based on previous Putnam problems. Give yourself a solid 3 uniterrupted hours - no more - and do what you can.

1. For what region of the real (a, b) plane, do both (possibly complex) roots of the polynomial $z^{2}+a z+b=0$ satisfy $|z|<1$?
2. Define $f_{0}(x)=e^{x}, f_{n+1}(x)=x f_{n}^{\prime}(x)$. Show that $\sum_{n=0}^{\infty} f_{n}(1) / n!=e^{e}$.
3. How many real roots does $2^{x}=1+x^{2}$ have?
4. The real and imaginary parts of z are rational, and z has unit modulus. Show that $\left|z^{2 n}-1\right|$ is rational for any integer n.
5. Show that we cannot have 4 binomial coefficients

$$
\binom{n}{m},\binom{n}{m+1},\binom{n}{m+2},\binom{n}{m+3}
$$

with $n, m>0$ (and $m+3 \leq n$) in arithmetic progression.
6. Let $\sum_{n=0}^{\infty} x^{n}(x-1)^{2 n} / n!=\sum_{n=0}^{\infty} a_{n} x^{n}$. Show that no three consecutive a_{n} are zero.
7. Find all possible polynomials $f(x)$ such that $f(0)=0$ and $f\left(x^{2}+1\right)=f(x)^{2}+1$.
8. S is a set with a binary operation * such that (1) $a * a=a$ for all $a \in S$, and (2) $(a * b) * c=(b * c) * a$ for all $a, b, c \in S$. Show that * is associative and commutative.

