
Putnam Exam: Sequence problems

1985A3. Let d be a real number. For each integer m ≥ 0 define a sequence {am(j)}, j =
0, 1, 2, . . . by the condition

am(0) = d/2m, and am(j + 1) = (am(j))2 + 2am(j), j ≥ 0

Evaluate limn→∞ an(n).

1985B2. Define polynomials fn(x) for n ≥ 0 by f0(x) = 1, fn(0) = 0 for n ≥ 1, and

d

dx
(fn+1(x)) = (n + 1)fn(x + 1)

for n ≥ 0. Find, with proof, the explicit factorization of f100(1) into powers of distinct
primes.

1987B4. Let (x1, y1) = (0.8, 0.6) and let xn+1 = xn cos yn − yn sin yn and yn+1 = xn sin yn +
yn cos yn for n = 1, 2, 3, . . . . For each of limn→∞ xn and limn→∞ yn, prove that the limit exists
and find it or prove that the limit does not exist.

1990A1. Let
T0 = 2, T1 = 3, T2 = 6,

and for n ≥ 3,
Tn = (n + 4)Tn−1 − 4nTn−2 + (4n − 8)Tn−3.

The first few terms are

2, 3, 6, 14, 40, 152, 784, 5168, 40576, 363392.

Find, with proof, a formula for Tn of the form Tn = An + Bn, where (An) and (Bn) are
well-known sequences.

1992A5. For each positive integer n, let

an =

{
0 if the number of 1’s in the binary representation of n is even,
1 if the number of 1’s in the binary representation of n is odd.

Show that there do not exist positive integers k and m such that

ak+j = ak+m+j = ak+2m+j,

for 0 ≤ j ≤ m − 1.

1992B3. For any pair (x, y) or real numbers, a sequence (an(x, y))n≥0 is defined as follows:

a0(x, y) = x,

an+1(x, y) =
an(x, y)2 + y2

2
for n ≥ 0.
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Find the area of the region {(x, y)|(an(x, y))n≥0 converges}.

1993A2. Let (xn)n≥0 be a sequence of non-zero numbers such that

x2
n − xn−1xn+1 = 1 for n = 1, 2, 3, . . . .

Prove there exists a real number a such that xn+1 = axn − xn−1 for all n ≥ 1.

1997A6. For a positive integer n and any real number c, define xk recursively by x0 = 0,
x1 = 1, and for k ≥ 0,

xk+2 =
cxk+1 − (n − k)xk

k + 1
.

Fix n and then take c to be the largest value for which xn+1 = 0. Find xn in terms of n and
k, 1 ≤ k ≤ n.

1999A6. The sequence (an)n≥1 is defined by a1 = 1, a2 = 2, a3 = 24, and, for n ≥ 4,

an =
6a2

n−1an−3 − 8an−1a
2
n−2

an−2an−3

Show that, for all n, an is an integer multiple of n.

2001B6. Assume that (an)n≥1 is an increasing sequence of positive real numbers such that
lim an/n = 0. Must there exist infinitely many positive integers n such that an−i+an+i < 2an

for i = 1, 2, . . . , n − 1?

2002A5. Define a sequence by a0 = 1, together with the rules a2n+1 = an and a2n+2 =
an + an+1 for each integer n ≥ 0. Prove that every positive rational number appears in the
set {

an−1

an
: n ≥ 1

}
=

{
1

1
,
1

2
,
2

1
,
1

3
,
3

2
, . . .

}
.

2003B2. Let n be a positive integer. Starting with the sequence 1,
1

2
,

1

3
, . . . ,

1

n
, form a new

sequence of n − 1 entries
3

4
,

5

12
, . . . ,

2n − 1

2n(n − 1)
, by taking the averages of two consecutive

entries in the first sequence. Repeat the averaging of neighbors on the second sequence to
obtain a third sequence of n − 2 entries and continue until the final sequence produced as a

single number xn. Show that xn <
2

n
.
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