Putnam Exam: Sequence problems

1985A3. Let d be a real number. For each integer $m \geq 0$ define a sequence $\left\{a_{m}(j)\right\}, j=$ $0,1,2, \ldots$ by the condition

$$
a_{m}(0)=d / 2^{m}, \text { and } a_{m}(j+1)=\left(a_{m}(j)\right)^{2}+2 a_{m}(j), \quad j \geq 0
$$

Evaluate $\lim _{n \rightarrow \infty} a_{n}(n)$.
1985B2. Define polynomials $f_{n}(x)$ for $n \geq 0$ by $f_{0}(x)=1, f_{n}(0)=0$ for $n \geq 1$, and

$$
\frac{d}{d x}\left(f_{n+1}(x)\right)=(n+1) f_{n}(x+1)
$$

for $n \geq 0$. Find, with proof, the explicit factorization of $f_{100}(1)$ into powers of distinct primes.

1987B4. Let $\left(x_{1}, y_{1}\right)=(0.8,0.6)$ and let $x_{n+1}=x_{n} \cos y_{n}-y_{n} \sin y_{n}$ and $y_{n+1}=x_{n} \sin y_{n}+$ $y_{n} \cos y_{n}$ for $n=1,2,3, \ldots$. For each of $\lim _{n \rightarrow \infty} x_{n}$ and $\lim _{n \rightarrow \infty} y_{n}$, prove that the limit exists and find it or prove that the limit does not exist.

1990A1. Let

$$
T_{0}=2, T_{1}=3, T_{2}=6
$$

and for $n \geq 3$,

$$
T_{n}=(n+4) T_{n-1}-4 n T_{n-2}+(4 n-8) T_{n-3} .
$$

The first few terms are

$$
2,3,6,14,40,152,784,5168,40576,363392
$$

Find, with proof, a formula for T_{n} of the form $T_{n}=A_{n}+B_{n}$, where $\left(A_{n}\right)$ and $\left(B_{n}\right)$ are well-known sequences.

1992A5. For each positive integer n, let

$$
a_{n}= \begin{cases}0 & \text { if the number of 1's in the binary representation of } n \text { is even } \\ 1 & \text { if the number of 1's in the binary representation of } n \text { is odd. }\end{cases}
$$

Show that there do not exist positive integers k and m such that

$$
a_{k+j}=a_{k+m+j}=a_{k+2 m+j}
$$

for $0 \leq j \leq m-1$.
1992B3. For any pair (x, y) or real numbers, a sequence $\left(a_{n}(x, y)\right)_{n \geq 0}$ is defined as follows:

$$
\begin{aligned}
a_{0}(x, y) & =x \\
a_{n+1}(x, y) & =\frac{a_{n}(x, y)^{2}+y^{2}}{2} \text { for } n \geq 0 .
\end{aligned}
$$

Find the area of the region $\left\{(x, y) \mid\left(a_{n}(x, y)\right)_{n \geq 0}\right.$ converges $\}$.
1993A2. Let $\left(x_{n}\right)_{n \geq 0}$ be a sequence of non-zero numbers such that

$$
x_{n}^{2}-x_{n-1} x_{n+1}=1 \text { for } n=1,2,3, \ldots
$$

Prove there exists a real number a such that $x_{n+1}=a x_{n}-x_{n-1}$ for all $n \geq 1$.
1997A6. For a positive integer n and any real number c, define x_{k} recursively by $x_{0}=0$, $x_{1}=1$, and for $k \geq 0$,

$$
x_{k+2}=\frac{c x_{k+1}-(n-k) x_{k}}{k+1} .
$$

Fix n and then take c to be the largest value for which $x_{n+1}=0$. Find x_{n} in terms of n and $k, 1 \leq k \leq n$.

1999A6. The sequence $\left(a_{n}\right)_{n \geq 1}$ is defined by $a_{1}=1, a_{2}=2, a_{3}=24$, and, for $n \geq 4$,

$$
a_{n}=\frac{6 a_{n-1}^{2} a_{n-3}-8 a_{n-1} a_{n-2}^{2}}{a_{n-2} a_{n-3}}
$$

Show that, for all n, a_{n} is an integer multiple of n.
2001B6. Assume that $\left(a_{n}\right)_{n \geq 1}$ is an increasing sequence of positive real numbers such that $\lim a_{n} / n=0$. Must there exist infinitely many positive integers n such that $a_{n-i}+a_{n+i}<2 a_{n}$ for $i=1,2, \ldots, n-1$?

2002A5. Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=$ $a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\} .
$$

2003B2. Let n be a positive integer. Starting with the sequence $1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}$, form a new sequence of $n-1$ entries $\frac{3}{4}, \frac{5}{12}, \ldots, \frac{2 n-1}{2 n(n-1)}$, by taking the averages of two consecutive entries in the first sequence. Repeat the averaging of neighbors on the second sequence to obtain a third sequence of $n-2$ entries and continue until the final sequence produced as a single number x_{n}. Show that $x_{n}<\frac{2}{n}$.

