
Putnam Exam: Combinatorics Problems

1985A1. Determine, with proof, the number of ordered triples {A1, A2, A3} of sets which
have the property that
(i) Ai ∪ A2 ∪ A3 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, and
(ii) A1 ∩ A2 ∩ A3 = ∅,
where ∅ denotes the empty set. Express the answer in the form 2a3b5c7d, where a, b, c, and
d are nonnegative integers.

1985B3. Let
a1,1 a1,2 a1,3 . . .
a2,1 a2,2 a2,3 . . .
a3,1 a3,2 a3,3 . . .
...

...
...

. . .

be a doubly infinite array of positive integers, and suppose that each positive integer appears
exactly eight times in the array. Prove that am,n > mn for some pair of positive integers
(m, n).

1989B4. Can a countably infinite set have an uncountable collection of nonempty subset
such that the intersection of any two of them is finite?

1990A6. If X is a finite set, let |X| denote the number of elements of X. Call an ordered
pair (S, T ) of subsets of {1, 2, . . . , n} admissible if s > |T | for each s ∈ S, and t > |S| for
each t ∈ T . How many admissible ordered pairs of subsets of {1, 2, . . . , 10} are there? Prove
your answer.

1991A6. Let A(n) denote the number of sums of positive integers a1 + a2 + · · · + ar which
add up to n with a1 > a2 + a3, a2 > a3 + a4, . . . , ar−2 > ar−1 + ar, ar−1 > ar. Let B(n)
denote the number of b1 + b2 + /cdots + bs which add up to n, with
(i) b1 ≥ b2 ≥ · · · ≥ bs.
(ii) each bi is in the sequence 1, 2, 4, . . . , gj, . . . defined by g1 = 1. g2 = 2, and gj = gj−1 +
gj−2 + 1, and
(iii) if b1 = gk then every element if {1, 2, 4, . . . , gk} appears at least once as a bi.
Prove that A(n) = B(n) for each n ≥ 1.

(For example, A(7) = 5 because the relevant sums are 7, 6 + 1, 5 + 2, 4 + 3, +2 + 1,
and B(7) = 5 because the relevant sums are 4 + 2 + 1, 2 + 2 + 2 + 1, 2 + 2 + 1 + 1 + 1, 2 +
1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1.)

1992B1. Let S be a set of n distinct real numbers. Let AS be the set of numbers that occur
as averages of two distinct elements of S. For a given n ≥ 2, what is the smallest possible
number of elements in AS?

1993A3. Let Pn be the set of subsets {1, 2, . . . , n}. Let c(n, m) be the number of functions
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f :Pn → {1, 2, . . . , m} such that f(A ∩ B) = min{f(A), f(B)}. Prove that

c(n, m) =
m∑

j=1

jn.

1993A4. Let x1, x2, . . . , x19 be positive integers each of which is less than or equal to 93.
Let y1, y2, . . . , y93 be positive integers each of which is less than or equal to 19. Prove that
there exists a (nonempty) sum of some xi’s equal to a sum of some yj’s.

1993B6. Let S be a set of three, not necessarily distinct, positive integers. Show that one
can transform S into a set containing 0 by a finite number of applications of the following
rule: Select two of the three integers, say x and y, where x ≤ y and replace them with 2x
and y − x.

1994A6. Let f1, f2, . . . , f10 be bijections of the set of integers such that for each integer n,
there is some composition fi1 ◦ fi2 ◦ · · · ◦ fim of these functions (allowing repetitions) which
maps 0 to n. Consider the set of 1024 functions

F = {f e1
1 ◦ f e2

2 ◦ · ◦ f e10
10 }

ei = 0 or 1 for 1 ≤ i ≤ 10. (f 0
i is the identity function and f 1

i = fi.) Show that if A is any
nonempty finite set of integers, then at most 512 of the functions in F map A to itself.

1995A1. Let S be a set of real numbers which is closed under multiplication (that is, if a
and b are in S, then so is ab). Let T and U be disjoint subsets of S whose union is S. Given
that the product of any three (not necessarily distinct) elements of T is in T and that the
product of any three elements of U is in U , show that at least one of the two subsets T, U
is closed under multiplication.

1995B1. For a partition π of {1, 2, 3, 4, 5, 6, 7, 8, 9}, let π(x) be the number of elements
in the part containing x. Prove that for any two partitions π and π′, there are two distinct
numbers x and y in {1, 2, 3, 4, 5, 6, 7, 8, 9} such that π(x) = π(y) and π′(x) = π′(y). [A
partition of a set S is a collection of disjoint subsets (parts) whose union is S.]

1996A3. Suppose that each of 20 students has made a choice of anywhere from 0 to 6 courses
from a total of 6 courses offered. Prove or disprove: there are 5 students and 2 courses such
that all 5 have chosen both courses or all 5 have chosen neither course.

1996A4. Let S be a set of ordered triples (a, b, c) of distinct elements of a finite set A.
Suppose that
(1) (a, b, c) ∈ S if and only if (b, c, a) ∈ S;
(2) (a, b, c) ∈ S if and only if (c, b, a) 6∈ S [for a, b c distinct];
(3) (a, b, c) and (c, d, a) are both is S if and only if (b, c, d) and (d, a, b) are both is S.
Prove that there exists a one-to-one function g from A to R such that g(a) < g(b) < g(c)
implies (a, b, c) ∈ S.
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1996B1. Define a selfish set to be a set which has its own cardinality (number of elements)
as an element. Find, with proof, the number of subsets of {1, 2, . . . , n} which are minimal
selfish sets, that is, selfish sets none of whose proper subsets is selfish.

1996 B5. Given a string S of symbols X and O, we write ∆(S) for the number of X’s in S
minus the number of O’s. For example ∆(XOOXOOX) = −1. We call a string S balanced
if every substring T of (consecutive symbols of) S has −2 ≤ ∆(T ) ≤ 2. Thus, XOOXOOX
is not balanced since it contains the substring OOXOO. Find, with proof, the number of
balanced strings of length n.

2000B1. Let aj, bj, cj be integers for 1 ≤ j ≤ N. Assume for each j, at least one of aj, bj, cj

is odd. Show that there exist integers r, s, t such that raj + sbj + tcj is odd for at least 4N/7
value of j, 2 ≤ j ≤ N .

2000B5. Let S0 be a finite set of positive integers. We define finite sets S1, S2, . . . of positive
integers as follows: the integer a is in Sn+1 if and only if exactly one of a − 1 or a is in Sn.
Show that there exist infinitely many integers N for which SN = S0 ∪ {N + a : a ∈ S0}.

2001B1. Let n be an even positive integer. Write the numbers 1, 2, . . . , n2 in the squares of
an n × n grid so that the k-th row, from left to right, is

(k − 1)n + 1, (k − 1)n + 2, . . . , (k − 1)n + n.

Color the squares of the grid so that half of the squares in each row and in each column are
red and the other half are black (a checkerboard coloring is one possibility). Prove that for
each coloring, the sum of the numbers on the red squares is equal to the sum of the numbers
on the black squares.

2003A1. Let n be a fixed positive integer. How many ways are there to write n as a sum of
positive integers,

n = a1 + a2 + · · ·+ ak,

with k an arbitrary positive integer and a1 ≤ a2 ≤ · · · ≤ ak ≤ a1 + 1? For example, with
n = 4, there are four ways: 4, 2 + 2, 1 + 1 + 2, 1 + 1 + 1 + 1.
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