For the Putnam Group

Important Series You Gotta Know! Professor Mel Hausner
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In addition, we have the binomial theorem, valid for all real values of « and |z| < 1.
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The Binomial Theorem is a finite sum when « is a non-negative integer, and in that case it
naturally converges for all . Here, as in the 4th sum above,
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A Few Infinite Sums:
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A Few Definite Integrals:
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