Putnam 1991, B5

Here is an alternate approach to the problem:
Given

$$
\begin{aligned}
f(x+y) & =f(x) f(y)-g(x) g(y) \\
g(x+y) & =g(x) f(y)+f(x) g(y)
\end{aligned}
$$

with f, g non-constant, real valued and differentiable and $f^{\prime}(0)=0$. To prove

$$
(f(x))^{2}+(g(x))^{2}=1
$$

(Anticipating f and g as cosine and sine,) set

$$
z(x)=f(x)+i g(x)
$$

It is then easy to verify that the given system is equivalent to

$$
\begin{equation*}
z(x+y)=z(x) z(y) \tag{1}
\end{equation*}
$$

Now take the derivative with respect to y and set $y=0$:

$$
z^{\prime}(x)=c z(x) \text { where } c=z^{\prime}(0)
$$

But this differential equation has the solution $z=A e^{c x}$. (For a proof, set $w=z e^{-c x}$ and check that $w^{\prime}=0$.) But using (1) this gives $A^{2}=A$. So $A=0$ or $A=1$. Reject $A=0$ beause this give $f=g=0$ and we are given that these are not constant. So $A=1$ and so $z(x)=e^{c x}$. But $c=z^{\prime}(0)=f^{\prime}(0)+i g^{\prime}(0)=i k$, where k is real, since $f^{\prime}(0)=0$. Thus,

$$
z(x)=e^{i k x}=\cos k x+i \sin k x
$$

and so $f(x)=\cos k x$ and $g(x)=\sin k x$. This clearly implies the conclusion (and in fact gives the precise form of f and g.)

