The length $P A, P B$, and $P C$ are $|1-z|,|\omega-z|$, and $\left|\omega^{2}-z\right|$. Here we use complex numbers to represent points. z is the point P and A, B and C are the complex numbers $1, \omega$, and ω^{2}. These are the cube roots of 1 , and $\omega=\frac{1+i \sqrt{3}}{2}, \omega^{2}=\frac{1-i \sqrt{3}}{2}$. As in the lecture, the complex numbers $1-z, \omega-z$, and $\omega^{2}-z$ do not sum to 0 . (If they did, their lengths would be the sides of a triangle.) Instead, we multiply these by $1, \omega$ and ω^{2} respectively to get the complex numbers

$$
\begin{equation*}
1-z, \omega(\omega-z), \omega^{2}\left(\omega^{2}-z\right) \tag{1}
\end{equation*}
$$

These do sum to 0 , and have the same lengths as $P A, P B$, and $P C$, and so these lengths do for the sides of a triangle. It is only necessary to show that the area of this triangle depends only on $|z|$. Here we use the fact that the area of triangle $O S T$ in the plane, with $O=(0,0)$, $S=(a, b)$, and $T=(c, d)$, is

$$
K=\frac{1}{2}|a d-b c|
$$

We use complex numbers to compute this. Take $z=a+b i$ and $w=c+d i$. Then

$$
\bar{z} w=(a-b i)(c+d i)=(a c+b d)+(a d-b c) i
$$

Take conjugates to get

$$
z \bar{w}=(a c+b d)-(a d-b c) i
$$

Subtract and divide by $2 i$ to get

$$
|a d-b c|=\left|\frac{\bar{z} w-z \bar{w}}{2 i}\right|=\frac{1}{2}|\bar{z} w-z \bar{w}| .
$$

So

$$
K=\frac{1}{4}|\bar{z} w-z \bar{w}| .
$$

In the problem at hand, we replace z by $(1-z)$ and w by $\omega(\omega-z)=\omega^{2}-\omega z$. This gives (using $\bar{\omega}=\omega^{2}$ and $\overline{\omega^{2}}=\omega$)

$$
\begin{aligned}
4 K & =\left|(\overline{1-z})\left(\omega^{2}-\omega z\right)-\left(\overline{\omega^{2}-\omega z}\right)(1-z)\right| \\
& =\left|(1-\bar{z})\left(\omega^{2}-\omega z\right)-\left(\omega-\omega^{2} \bar{z}\right)(1-z)\right| \\
& =\left|\omega^{2}-\omega z-\bar{z} \omega^{2}+\bar{z} \omega z-\left(\omega-\omega z-\omega^{2} \bar{z}+\omega^{2} \bar{z} z\right)\right| \\
& =\left|\omega^{2}-\omega+\left(\omega-\omega^{2}\right) \bar{z} z\right|
\end{aligned}
$$

But since $\omega=(-1+i \sqrt{3}) / 2$ and $\omega^{2}=(-1-i \sqrt{3}) / 2$, we have $\omega-\omega^{2}=i \sqrt{3}$. Further $|z|^{2}=z \bar{z}$. Thus,

$$
4 K=\left.|\sqrt{3} i| z\right|^{2}-i \sqrt{3} \mid=\sqrt{3}\left(1-|z|^{2}\right)
$$

This shows that K depends only on $O P=|z|$.

