Solution problem B4, 2003. We have $P(z)=\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{3}\right)$ has rationalrcoefficients. We are given that $r_{1}+r_{2}$ is rational, and that $r_{1}+r_{2} \neq r_{3}+r_{4}$. We must show that $r_{1} r_{2}$ is rational.

In what follows, we denote rational numbers by $q_{1}, q_{2}, \ldots$ Relating the coefficients to the roots $r_{i}$, we have

$$
\sigma_{i}=q_{i} ;(1=1,2,3,4)
$$

Here $\sigma_{i}$ is the $i$-th elementary function of the roots:

$$
\sigma_{1}=r_{1}+r_{2}+\ldots ; \sigma_{2}=r_{1} r_{2}+r_{1} r_{3}+\ldots ; \sigma_{3}=r_{1} r_{2} r+3+\ldots ; \sigma_{4}=r_{1} r_{2} r_{3} r_{4}
$$

Now to the problem. Let

$$
S=r_{1}+r_{2} ; T=r_{3}+r_{4} ; U=r_{1} r_{2} ; V=r_{3} r_{4}
$$

We are given $S=q_{5}$ (that is, rational) and $U \neq V$. We have to show that U is rational. We cazn express all of the $\sigma_{i}$ in terma of $S, T, U, V$. Thus
(1) $S+T=\sigma_{1}=q_{1}$
(2) $S T+U+V=\sigma_{2}=q_{2}$
(3) $T U+S V=\sigma_{3}=q_{3}$
(4) $U V=\sigma_{4}=q_{4}$

Since $S=q_{5}$, (1) gives $q_{5}+T=q_{1}$, and solving for $T$, we get $T=q_{6}$. Substituting in (2) this gives $q_{5} q_{6}+U+V=q_{2}$, yielding
(5) $U+V=q_{7}$

Substituting in (3) gives
(6) $q_{6} U+q_{5} V=q_{3}$

Now solve (5) and (6) for $U$ and $V$. Here we must use $q_{5} \neq q_{6}$ (ie $S \neq T$ ). Eliminate $V$ by muliplying (5) by $q_{5}$ and subtracting. This gives
(5') $q_{5} U+q_{5} V=q_{5} q_{7}$, and subtracting ( $5^{\prime}$ ) from (6), we get
(7) $\left(q_{6}-q_{5}\right) U=q_{8}$, so $U=q_{9}$, which is the result.

A general, after the fact observation: Why was this so hard (for me) in lecture, and why so easy in the comfort of my home? Answer: It's not that I'm nervous in front of a class, or can't think on the spot. It's because in lecture, I used $S \in Q$, while in this note, I used $s=q_{5}$. Isn't it much easier to use equality than $\in$ ? I think so. We are reduced to solving two linear equations ((5) and (6)) in 2 unknowns. No problem!

