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1 General introduction to the course

These are the notes for a course called Stochastic Calculus offered at the Courant
Institute in the Fall semester of 2022. It is a “half course”, meaning that it
consists of seven lectures of just under two hours. Most of the students are in
the MS program Mathematics in Finance but the course was not intended for
them only. I assumpe that the student have a tolerance for examples related to
finance, and examples not related to finance.

The course is for a person interested in stochastic calculus as a practical
modeling and analysis tool, not as a technical branch of probability theory. It
describes creating and interpreting SDE (stochastic differential equation) mod-
els of random processes, and how to learn predictions of such models using
simulation and the connections between SDE and PDEs (partial differential
equations). There is little of the measure theory and no rigorous proofs of any
of the main theorems. It is more like the “Freshman calculus” approach to
stochastic calculus than the “mathematical analysis” approach.

The course is an experimental deviation from earlier versions that build up
to diffusion processes after a discussion of Brownian motion. This course begins
with and focused on SDE models, with Brownian motion mainly used as the
simplest example. A more common approach is to describe Brownian motion
in detail and then describe other diffusion processes as functions of Brownian
motion. The “function of Brownian motion” approach has some mathematical
technical advantages, but it can get in the way of modeling and computing in
practical applications. If the class hates this approach, next year’s class will
revert to the old ways.

The course is at the level of beginning graduates or advanced undergraduates
with the right technical background but not necessarily mathematics majors.
Indispensable prerequisites are multi-variate calculus, linear algebra, and a prob-
ability background that includes multi-variate probability densities including the
multi-variate normal and the central limit theorem. The assignments require
students to use Python and the standard packages for numerical computing,
Numpy, Scipy, and Matplotlib.

2 Introduction to the subject

Stochastic Calculus is a collection of methods for creating and analyzing models
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of dynamical systems driven, in part, by noise. Stochastic calculus is an exten-
sion of ordinary calculus, which is used to create ordinary differential equations
that model systems without noise. There are some major differences between
stochastic modeling with stochastic differential equations (SDE) and modeling
noise free dynamics with ordinary differential equations (ODE). One difference
is that “the” solution of the SDE is random. Two simulations starting at the
same place give different results. A theoretical description of the solution of
an SDE involves probability density, expected values, mean and variance, and
so on. By contrast, the solution for an ODE with a given starting point is a
single trajectory. There are many more subtle differences that make SDE and
stochastic calculus challenging to master.

Notation and terminology

A dynamical model involves a state at time t with n components. An ODE
model might write this as x(t) = (x1(t), . . . , xn(t)). SDE modelers typically
write Xt = (X1,t, . . . , Xn,t). The time variable t is a subscript rather than a
function argument. The state is a capital letter, indicating that its value is
random. An ODE is written using derivatives, as

d

dt
x(t) = f(x(t)) . (1)

An SDE is written using differentials, as

dXt = a(Xt) dt+ b(Xt) dWt . (2)

The ODE could be written as dx(t) = f(x(t)) dt, but many people prefer the
derivative form (1) because the derivative has a mathematical definition while
the differentials do not (in this context). The SDE expresses a model of stochas-
tic dynamics in which the expected value of dXt is a(Xt) dt and the covariance
matrix of dXt is determined by b(Xt). In notation to be clarified later, these
have the form of conditional mean and covariance:

E[ dXt | · · · ] = a(Xt) dt , cov( dXt | · · · ) = bbt(Xt) dt . (3)

The coefficient vector a is the infinitesimal mean, and the matrix µ = bbt is
the infinitesimal covariance. These are often called drift and quadratic variation
respectively. The final factor dWt is the increment of Brownian motion. This
may be viewed literally as the differential of a random function of time called
Brownian motion, or it may be viewed just as a way to say: independent of
everything in the past, mean zero, covariance I dt.

This course uses p(x, t) to denote the probability density of the random
variable Xt. Figure 2 has estimates of p(x, t) for two t values. This is for the
Ornstein Uhlenbeck process, which described by the SDE

dXt = −aXtdt+ σdWt . (4)
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Figure 1: Probability density of Xt estimated for two t values using a histogram
of many simulated paths.

All paths start with X0 = 0. The PDF for t = .5 is more narrow than the PDF
for t = 2 because paths have had less time to disperse. Figure 2 plots many
paths and shows that they are generally closer to x = 0 at the earlier time.
The narrower t = .5 density is also higher because the densities have the same
integral.

Rough paths

In probability theory, a function of a time variable may be called a path. An
SDE describes a random path Xt. If you simulate the SDE process many times,
you get many different paths. The “solution” of an SDE is not a single path,
but a probability distribution describing how likely different sets of paths can
be. A typical path is not a “smooth”, or even differentiable function of t. This
explains the fact that some of the rules of ordinary calculus do not apply to SDE
paths. Figure 2 plots a number of independently simulated paths to illustrate
their behavior. Each path position Xt seems to be a continuous function of t,
but they never seems to have a well defined slope.

To be more precise, let ∆X = Xt+∆t − Xt be the increment in the path
corresponding to a small ∆t. The quantitative analysis of Sections 4 and 5 will
show that the size of a typical increment is |∆X| ∼

√
∆t. This

√
∆t comes up
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Figure 2: A collection of random paths generated by the Ornstein Uhlenbeck
SDE (4).. Three paths are in bold color and the rest are thin gray. The paths
take different random values but they share qualitative properties such as rough-
ness.

constantly in stochastic calculus. This implies that the average velocity over
this interval of time satisfies ∣∣V ∣∣ =

|∆X|
∆t

∼ 1√
∆t

.

This goes to infinity as ∆t → 0. The path Xt is “rough” (not differentiable or
smooth) because its velocity is always (almost always) infinite, either positive
or negative infinity.

Cancellation

Cancellation in a sum or an integral means that the positives nearly cancel the
negatives, so the result is much smaller than if you just multiply the number of
terms by the size of a typical term (for a sum) or multiply the typical size of
the integrand by the length of the interval of integration (for an integral). An
example is the indefinite integral

Ft =

∫ t

0

sin(s) ds .
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The typical size of the integrand is maybe |sin(s)| ∼ 1
2 . If you multiply this

typical size by the length of the integration interval, you get 1
2 t. This becomes

large when t is large. However, the actual value of the integral is Ft = cos(t),
which is never bigger than one. When t is large, the positive and negative parts
of the integrand roughly cancel.

Cancellation happens in probability when you take a sum or an integral of
random variables with mean zero (or close to zero). The increment dXt is such
a quantity. We will see that E[dXt] is on the order of dt but E[|dXt|] is on the
order of

√
dt.

To say this in a slightly different way, suppose tk = k∆t is a sequence of
times with a small separation ∆t. Let ∆Xk = Xtk+1

−Xtk be the corresponding
increments of Xt. Now take the limit ∆t → 0 with tn = n∆t = T fixed. It is
always true, for any such ∆t, that

XT −X0 =

n−1∑
k=1

∆Xk . (5)

However, it is also true, almost surely (see below for the definition of “almost
surely”) that

n−1∑
k=1

|∆Xk| → ∞ .

This resolves the paradox that the velocity is infinite but the random process
goes only finitely far. Cancellation comes from the direction constantly chang-
ing.

Ito calculus and (dX)2

The infinite velocity and large increments of sample paths lead to a breakdown
of the ordinary rules of calculus. In studying solutions of and ODE (1), a typical
chain rule calculation would be

d

dt
U(x(t)) = ∇U(x(t)) ẋ(t) = ∇U(x(t)) f(x(t)) .

For example, this can be integrated to give

U(x(T ))− U(x(0)) =

∫ T

0

∇U(x(t)) f(x(t)) dt .

With a small ∆t, the integral is approximated by a sum, so

U(x(T ))− U(x(0)) ≈
n−1∑
k=0

∇U(x(tk)) f(x(tk)) ∆t . (6)

In Freshman calculus you (should) learn that the sum on the left converges to
the integral in the limit ∆t→ 0.
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The stochastic calculus version of this, which is the Ito calculus, relates to
the old-fashioned “differential” version of the chain rule, which is

dU(x(t)) = ∇U(x(t)) dx .

The total change integral (6) is

U(x(T ))− U(x(0)) =

∫ T

0

∇U(x(t)) dx(t) . (7)

[A “modern” calculus course might tell you that “dx” doesn’t “make sense”,
so that dx must be replaced by dx

dt dt.] The integral on the left has a finite ∆t
approximation, using the notation of (5) and xk = x(tk).

U(x(T ))− U(x(0)) ≈
n−1∑
k=0

∇U(x(tk)) ∆xk . (8)

The right side sum converges to the integral in (7) and therefore to the left side
here, in the limit ∆t→ 0.

This is not true in stochastic calculus if Xt is the solution of an SDE model
(2). The ordinary calculus approximation dU ≈ ∇U dx, which is the basis of (8)
is not good enough. Instead, you need the Ito’s lemma approximation, which is
based on the second order Taylor approximation of dU :

dU ≈ ∇U dX +
1

2
(dX)T

(
D2U

)
dX . (9)

The notation is that D2U is the n×n hessian matrix of second partial derivatives(
D2U

)
jk

=
∂2U

∂xj∂xk
.

Because of cancellation (this subtle point is discussed later in the course), it
suffices to use the expected values of the second terms on the right, but not the
first term. Written out, the second term is

1

2

n∑
j=1

n∑
k=1

(
D2U

)
jk
dXj,tdXk,t .

The expected value of one of the products on the right is

E[ dXj,tdXk,t ] = cov( dXj,t , dXk,t ) + E[ dXj,t ] E[ dXk,t ] .

With all of this, the stochastic calculus version of (8) is

U(XT )−U(X0) ≈
N∑
i=1

∇U(Xti)dXti+
1

2

N∑
i=1

n∑
j=1

n∑
k=1

(
D2U

)
jk

cov( dXj,t , dXk,t ) .

(10)
By the end of the course, you should understand why we keep these terms and
drop others. The two reasons are cancellation and smallness of neglected terms.
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No PDF in path space

The probability distribution of the random path is not given by a probability
density. The term path space is used for the collection of all functions of time
that a random path might be. One specific path space is the set of continuous
functions, saying thatXt is a continuous function of t, defined for t in the interval
0 ≤ t ≤ T and starting with a definite value such as X0 = 0. This path space is
a vector space in the sense of linear algebra, but it is infinite dimensional in the
sense that it does not have a finite basis. By contrast, suppose Y is a random
object defined by n components Y = (Y1, · · · , Yn). Then the distribution of
Y might be defined by a probability density (PDF, for “probability density
function”) in the sense that for A set in y−space

Pr(Y ∈ A) =

∫
A

p(y) dy1 · · · dyn . (11)

A general path in an infinite dimensional path space is not described by a finite
list of parameters and general probabilities are not described by integration over
a finite number of parameters as in (11).

Stochastic calculus looks for ways to find probability densities for some quan-
tities, such as the n component random variable XT for a fixed T . In finite di-
mensional probability, these marginal probability distributions would be found
by “integrating out” the rest of the variables. This is impossible in path space
because there are infinitely many values t 6= T . And, there is no PDF for
the path. Simulation is an important tool in really challenging practical prob-
lems. The main theoretical tool is partial differential equations. These have
names such as forward equation, backward equation, Feynman Kac equation (a
misnomer used by many practitioners), etc.

Almost sure properties

A statement about a random object Y is true almost surely if the probability
that it is true is one. In formulas, if A is a set of objects, then

“Y ∈ A almost surely”, or “Y ∈ A a.s.”, means Pr(Y ∈ A) = 1 .

Even if Y ∈ A almost surely, there may be possible outcomes y with y /∈ A. For
example, if Y is a one component random variable with a PDF p(y), then y = 0
is a possible outcome – an element of the probability space – but Pr(Y = 0) = 0.
This may be expressed by: Y 6= 0, a.s.

Interesting almost sure properties usually involve limits. A simple example is
the strong law of large numbers, which concerns the average of N independent
samples of a PDF p(y). The hypothesis is that the absolute value has finite
expectation:

E[ |Y | ] =

∫
|y| dy <∞ .
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The theorem is that if random variables Yk are independent and have the same
PDF, then, almost surely, the sample means converge to the actual mean:

lim
N→∞

1

N

N∑
k=1

Yk = E[Y ] .

Limits are the theoretical foundation of ordinary calculus. For example,
if f(x) is continuous then the Riemann sum approximation converges to the
integral in the limit ∆x→ 0. For the stochastic integrals of stochastic calculus,
these limits are correct almost surely.

3 Introduction to the Section

This section is about creating and simulating SDE models of the form (2).

3.1 Multi-variate normal

The formulas and linear algebra of multi-variate normals and covariances is
used constantly in stochastic calculus, particularly for multi-variate processes.
Here is a quick summary. Let p(y) be the PDF of a multi-component random
variable Y = (Y1, · · · , Yn). Then Y is a multi-variate normal if there is a vector
µ = (µ1, · · · , µn) and a symmetric positive definite n× n matrix Σ so that

p(y) =
1

(2π)
n
2

1√
det(Σ)

e−
1
2 (y−µ)tΣ−1(y−µ) . (12)

This formula has the properties that∫
Rn

p(y) dy = 1

E[Y ] =

∫
Rn

yp(y) dy

= µ

cov(Y ) = E
[

(Y − µ)(Y − µ)t
]

=

∫
Rn

(y − µ)(y − µ)tp(y) dy

= Σ .

That is to say that (12) defines the probability density of a random variable
with mean µ and covariance matrix Σ.

A linear mapping applied to a multi-variate normal gives another multi-
variate normal. If Y is multi-variate normal and X = AY + b, then X is
multi-variate normal.
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If A is an m × n matrix and b ∈ Rm is an m−component “offset”, and if
X = AY + b, then X is multivariate normal. The mean and covariance of X
are given by (in hopefully clear notation)

µX = AµY + b (13)

ΣX = AΣYA
t . (14)

The second formula follows from the calculation, which uses facts of matrix
multiplication,

ΣX = E
[

(X − µX)(X − µX)t
]

= E
[

[A(Y − µY )] [A(Y − µY )]
t
]

= E
[
A(Y − µY )(Y − µY )tAt

]
= AE[ (Y − µY )(Y − µY )]

t
At

= AΣYA
t .

The probability density formula for the PDF of X involves Σ−1
X , so it makes

strict sense only if ΣX is non-singular. This means that m ≤ n, so X cannot
have more components than Y . If m = n, then A must be non-singular. If
m < n, then A must have maximal rank, which is m.

4 SDE models, infinitesimal mean and variance

We describe SDE models by analogy to ODE models. We give similarities and
differences in some technical notation.

An ODE model involves a state “variable”, which is a vector with d compo-
nents

x(t) =

x1(t)
...

xd(t)

 .

We usually treat vectors as column vectors when we do matrix/vector alge-
bra. But we might write x = (x1, · · · , xd) instead of the more correct x =
(x1, · · · , xd)T if we are just listing components of x.

ODE models assume that x(t) is a differentiable function of t. This means
that if ∆t is small, then ∆x = x(t + ∆t) − x(t) is approximately proportional
to ∆t. The constant of proportionality may be written as

ẋ =
d

dt
x =

ẋ1(t)
...

ẋd(t)

 .
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“Approximately proportional” means that1

∆x = ẋ∆t+O(∆t2) .

ODE models give ẋ(t) in terms of the state x(t). For component k, this is
ẋk(t) = fk(x(t)). The model specifies that if ∆t is small, then the change in
component xk over that time interval is

∆xk ≈ fk(x1(t), · · · , xd(t)) ∆t . (15)

These functions fk are the ODE model. The hardest part of modeling a system
is deciding what these fk should be.

An ODE model depends on the hypothesis that ∆x depends on x(t) and
∆t, but not on x(s) for s < t. The functions fk(x) give this dependence. The
update formula (15) has only components of x(t) on the right side, not x(s) for
s 6= t.

Here is an example to emphasize this point. Suppose C(t) is the concen-
tration of a chemical in air. There is a chemical reaction that consumes the
chemical at a rate proportional to the concentration and the temperature, T (t)

dC

dt
= −k T (t)C(t) .

The chemical reaction increases the temperature in a way that is proportional
to a “heat release” coefficient r and the reaction rate kC(t)

T (t) = T (0) + k r

∫ t

0

C(s) ds .

This gives a model

dC

dt
= −k

(
T0 + kr

∫ t

0

C(s) ds

)
C(t) . (16)

This is an equation involving derivatives, but it is not an ODE model because
the right side depends on values C(s) for s < t. To put this into the form of
an ODE model, define a two component state variable x(t) = (C(t), T (t)). The
dynamics are given by

dC

dt
= −kT (t)C(t) (17)

dT

dt
= krC(t) . (18)

It takes a two component state space to make this model into an ODE model.
We can put this model into generic notation using all the notation

x =

(
x1

x2

)
=

(
C
T

)
ẋ = f(x) =

(
f1(C, T )
f2(C, T )

)
=

(
−kTC
krT

)
=

(
−k x2 x1

k r x1

)
.

1There is a summary of “big Oh” notation, as in O(∆t2) at the end. A good calculus book
should describe it.
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An SDE model specifies the infinitesimal mean and the infinitesimal covari-
ance at a time t, as a function of Xt, which is the state at time t. The change
in time interval [t, t+ ∆t] is

∆X = Xt+∆t −Xt .

The expected value of ∆X is approximately proportional to ∆t:

E[ ∆X] = a(Xt)∆t+O(∆t2) .

It is traditional to use a(x) for the infinitesimal mean, also called drift, instead
of the f(x) that is used in ODE models. The infinitesimal mean/drift has d
components.

The infinitesimal mean formulas just above need to be made more precise.
In an SDE model, you are modeling the future evolution of a path given that
you already know the whole past from the “beginning of time” (time t = 0 by
tradition) up to time t. This path may be called X[0,t]. What we model is the
the statistics of the future Xt+∆t, with ∆t > 0, conditioned on knowing the
path up to time t. This is analogous to the difference between the dynamics of
C(t) in (16), which is not independent of C([0, t]), and the ODE model of C
and T together in (17) and (18). The latter depend on the path C([0, t]) and
T ([0, t]) only through the present values C(t) and T (t). In the stochastic model,
the probability distribution of the future Xt+∆t depends on the past X[0,t] only
through the “present” value Xt. A more correct version of the infinitesimal
mean formula uses conditional probability notation, as

E
[

∆X | X[0,t]

]
= a(Xt)∆t+O(∆t2) . (19)

It is common to use the notation of differentials to signal that the O(∆t2)
terms will be ignored. In that way of thinking, we write dt for a small positive
increment of time. We write dXt = Xt+dt−Xt for the corresponding increment
of X. The infinitesimal mean formula, in this notation, is just

E
[
dXt | X[0,t]

]
= a(Xt)dt . (20)

SDE modeling differs from ODE modeling in that an SDE model determines
the probability distribution of Xt+∆t, conditioned on the known Xt, but the
SDE model does not determine the value of Xt+∆t as an ODE model would.
Therefore, an SDE model also must include a measure of the conditional uncer-
tainty of Xt+∆t. This is the infinitesimal variance or infinitesimal covariance.

cov
[

∆Xt | X0,t]

]
= C(Xt)∆t+O(∆t2) . (21)

The infinitesimal covariance matrix C should be called the “covariance rate”
because the actual covariance is this matrix multiplied by ∆t. Mathematicians
often call C, or the integral of C, the quadratic variation. It turns out that
the probability distribution of paths X[0,T ] is determined by the infinitesimal
mean/drift and infinitesimal (co)variance/quadratic variation. To be clear, a
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multivariate Gaussian is determined by its mean and covariance matrix. But
the distribution of SDE paths does not have to be Gaussian. The distribution
of ∆X is approximately Gaussian if ∆t is small, which is enough.

A stochastic differential equation description of the dynamics has the form
(2). The first term on the right is the infinitesimal mean (19). The term
b(Xt)dWt is the d×d noise coefficient matrix and dWt is the increment of Brow-
nian motion. It is a model of uniform yet totally unpredictable noise. “Totally
unpredictable” means that dWt is independent of W[0,t], and E[ dWt] = 0 al-

ways. We don’t have to write E
[
dWt |W[0,t]

]
= 0 because dWt is assumed to

be independent of W[0,t]. “Uniform” means that the statistics of dWt are the
same at every time. This means that the infinitesimal (co)variance of Brown-
ian motion CB is a constant independent of t and (as just stated) W[0,t]. By
convention, we take CB = I, so

cov( dWt) = I dt . (22)

In components, this is
var( dWk,t) = dt , (23)

and
cov( dWj,t, dWk,t) = 0 , if j 6= k . (24)

A d component Brownian motion process is written

Wt =

W1,t

...
Wd,t

 .

The components of Brownian motion are independent and have the same dis-
tribution.

5 Ito’s lemma, the stochastic chain rule

6 Simulating diffusion processes

Simulating a diffusion process governed by an SDE is a lot like simulating an
ODE trajectory. You replace dt by a positive but small ∆t and march forward in
time in a sequence of time steps. By convention, the starting time will be t = 0
and the time step times are tn = n∆t. The time between them is tn+1−tn = ∆t.
A superscript ∆t will indicate that we are making the finite ∆t approximation.
The notation may be confusing, but an approximation to the ODE dynamics
(1) is

∆x∆t(tn) = f(x∆t(tn)∆t .

This may be written as

x∆t(tn+1) = x∆t(tn) + f(x∆t(tn))∆t . (25)
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This is called the forward Euler method, or just Euler’s method.
We simplify notation for SDE paths by writing X∆t

n instead of X∆t
tn . The

analogous time step for the SDE (2) is

∆X∆t
n = a(X∆t

n ∆t+ b(X∆t
n ) ∆Wn .

The a(·)∆t is the same as for the ODE. The ∆Wn are random and independent
noise variables that have

E[ ∆Wn] = 0 , cov(∆Wn) = I∆t . (26)

It is convenient (but not necessary!) to satisfy the statistical conditions (26) by
taking

∆Wn =
√

∆tZn , Zn ∼ N (0, I) .

If you do this, the algorithm to simulate an SDE path is first to take X0 either
to be the known starting value or to have the specified starting probability
distribution. The rest of the path is found using the above, in the form

X∆t
n+1 = X∆t

n + a(X∆t
n )∆t+

√
∆t b(X∆t

n )Zn , Zn ∼ N (0, I) , independent .
(27)

This is Euler’s method for the SDE, also called the Euler Maruyama method.
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