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The two topics for this week both involve putting integrals in the exponential.
For the Feynman Kac formula,1 the integral is dt. For the Girsanov change of
measure formula, the integral is dWt. If Xt is an Ito process, then another Ito
process is

Yt = eXt .

We can apply Ito’s lemma with f(x) = ex, and ∂xf(x) = ex = f(x), and
∂2xf(x) = f(x). The result is, using Yt = eXt on the right side

dYt = Yt dXt +
1

2
Yt (dXt)

2 . (1) dexp

If Xt is a dt integral (Feynman Kac), then the second term on the right is zero.
The formula (

dexp
1) is a differential expression that is linear in Yt. You can make

Yt satisfy a linear differential relation by choosing Xt appropriately. Defining
Xt by indefinite integrals might do this, for example. One possibility is:

Xt =

∫ T

t

as ds+

∫ T

t

bs dWs . (2) Xint

The differential is
dXt = −atdt− btdWt .

Integrating starting at t instead of ending at t as we have done up to now gives
the minus signs. For example, if at > 0 then increasing t a little makes the ds
integral in (

Xint
2) a little smaller. For a more formal explanation, note that the

integral from 0 to T does not depend on t and its differential is zero:

0 = d

(∫ T

0

as ds

)
= d

(∫ t

0

as ds

)
+ d

(∫ T

t

as ds

)

The differential of the first integral on the right is atdt. Therefore, the differ-
ential of the second integral must be −atdt. The same argument applies to the
dW integrals, but reasoning about the sign of bt seems sketchier. You might
integrate from t as in (

Xint
2) rather than to t as before so that Yt = eXt is more

Markov like – not depending on the path from 0 to t.

1This is named for Richard Feynman, a physicist, and Marc Kac, a mathematician who
was trying to understand what Feynman was saying. The name “Kac” is pronounced “cats”,
or maybe “cots”. There is a restaurant on Houston street called the “Katz Deli”. Both Marc
Kac and the founder of the Katz Deli come from Poland, where their names were spelled the
same.
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Exponentials of integrals have various uses in stochastic calculus and mod-
eling. An example from finance is then rt is a random fluctuating interest rate.
If you have Mt invested in an account that has this rate, then

dMt = rtMtdt . (3) dM

In time dt you add rtMtdt to your account. The relation between Mt and rt is
given by an integral of the form (

Xint
2) with bs = 0. This is part of Feynman Kac

theory. See Section
sec:FK
1. Part of this is expanding the family of PDEs that are

related to stochastic integrals. That is, it expands the family of PDEs that may
be interpreted as backward equations. This expands the family of PDEs that
may be solved by simulation.

A fancier application is the Girsanov change of measure formula of Sections
sec:cm
3

and
sec:G
4. Here, “measure” means probability distribution. Suppose some quantity

a is defined in terms of a random variable X as an expectation, as we saw for
expected utility last class:

a = Ep[V (X)] =

∫
V (x) p(x) dx . (4) a

We say “a is the expected value of V (X) in the p−world”, which refers to
the “world” in which X is a random variable with p as its PDF. There is an
expectation formula for the same number a in the “q−world”, which is the world
in which q is the PDF of X. For that, we first define the likelihood ratio

L(x) =
p(x)

q(x)
. (5) L

(Probabilities may be called likelihoods when you use them as functions for some
purpose other than integrating or summing to find expectation values.) Some
algebra gives a formula for a in the “q−world”, which is

a = Eq[V (X)L(X)] =

∫
V (x)L(x) q(x) dx . (6) aL

When you go from the p− world to the q−world, you get the same a only if you
compensate for changing measures (probability distributions) by putting in the
likelihood ratio factor.

Changing measure for stochastic processes is Girsanov theory. In the p−world,
Xt satisfies one SDE. In the q−world is satisfies a different SDE. This relies on
the point of view that an SDE is a way of defining a probability distribution on
path space (the set of paths). Changing measure for SDE has various applica-
tions. One is that it might be easier or more desirable to simulate the q−process
than the original p−process. Another is rare event simulation. That estimating
expectation values where most paths make little contribution to the expecta-
tion. The “important” paths, the ones that contribute to the expectation, may
be more likely in the q−world.

We will see that changing measure in path space is more subtle than changing
measure for one dimensional random variables as in (

aL
6). The change of measure
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formula (
L
5) does not change zero probabilities to non-zero probabilities. For

example, if X > 0 in the p−world, then X > 0 also in the q−world. This is
easy to figure out in one dimension (or finite dimensions) by looking at where
p(x) = 0 and q(x) = 0. The probability distributions in path space, which are
genuine probability measures, are not given by probability densities. Girsanov’s
theorem tells you which worlds can be transformed into each other and which
cannot.

1 Feynman Kac Theory
sec:FK

Feynman Kac theory, often called “the Feynman Kac formula”, is a relationship
between a multiplicative value function and its backward equation. Suppose Xt

is a diffusion process that satisfies the SDE

dXt = a(Xt) dt+ b(Xt) dWt . (7) SDE

A multiplicative functional is a function of the diffusion process path of the form

e
∫ T
0
V (Xs) ds . (8) mf

It’s called multiplicative because it’s the exponential of an integral, which is a
continuous sort of sum. If it were a discrete sum, the exponential would turn it
into multiplication:

ea+b+c+··· = ea eb ec · · · .

A “functional” is a function of a function. The Feynman Kac value function for
a multiplicative functional is

f(x, t) = E
[
e
∫ T
t
V (Xs) ds | Xt = x

]
. (9) mvf

Section
sec:ir
2 explains how multiplicative functionals are used in finance to model

fluctuating uncertain interest rates.
We can find the backward equation for f in (

mvf
9) using the reasoning from

Week 4 together with (
dexp
1) from the Introduction. We look at the process starting

at t but without conditional expectation

Yt = e
∫ T
t
V (Xs) ds . (10) Yt

Then (using reasoning from the Introduction)

dYt = −V (Xt)Yt dt .

There are no Ito terms here because V (Xt) is a differentiable function of t (no
dW part, quadratic variation equal to zero). On the other hand, looking at the
definitions of f(x, t) and Yt, you see that

f(x, t) = E[Yt | Xt = x] .
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Therefore,
E[ df(Xt, t) | Xt = x] = E[ dYt | Xt = x] .

Ito’s lemma applied to the left side while dY is described as above. As in Week
4, we expand f , then substitute the SDE (

SDE
7) for dX and use the “Ito rule”

(dXt)
2 = b2dt. Conditioning on Xt = x allows us to substitute x for a and b

in the SDE. Finally, E[dW ] = 0 leads to expressions involving only dt on both
sides.

E[ df(Xt, t) | Xt = x] = E[−V (Xt)Yt dt | Xt = x]

E

[
fx dXt +

1

2
fxx (dXt)

2 + ft dt | Xt = x

]
= −V (x) dtE[Yt | Xt = x]

fx(x, t) a(x) dt+
1

2
fxx(x, t) b2(x) dt+ ft(x, t) dt = −V (x)f(x, t) dt

The resulting equation may be written in the form

ft + a(x)fx +
1

2
b2(x)fxx + V (x)f = 0 . (11) beFK

This equation needs final conditions. This is “obvious”, as with other backward
equations. Setting t = T in the definition of Yt (

Yt
10) gives f(x, T ) = 1.

If that derivation seemed mysterious, here’s a version that might seem more
natural. This, too, is modeled on a derivation from Week 4. In this case, it’s the
one that uses the tower property to relate expectations at time t to expectations
at time d+ dt. With the multiplicative functional, the difference between t and
t+ dt includes a piece of the integral. For that reason, we calculate

e
∫ T
t
V (Xs) ds = e

∫ t+dt
t

V (Xs) ds+
∫ T
d+dt

V (Xs) ds

= e
∫ t+dt
t

V (Xs) ds e
∫ T
d+dt

V (Xs) ds

= ( 1 + V (x) dt ) e
∫ T
d+dt

V (Xs) ds .

This goes into the definition of the value function and allows us to separate
out the contribution from “now” (between t and t + dt) from the rest. After
that, you Taylor expand f and discard the dW terms (which have expected
value zero). At the end, we multiply out expressions with dt and discard the
dt2 terms, as (1 + u dt)(1 + v dt) = 1 + (u+ v)dt.

f(x, t) = E
[
e
∫ t+dt
t

V (Xs) ds e
∫ T
d+dt

V (Xs) ds | Xt = x
]

= ( 1 + V (x) dt ) E
[
e
∫ T
d+dt

V (Xs) ds | Xt = x
]

= ( 1 + V (x) dt ) E[ f(Xt+dt, t+ dt | Xt = x]

= ( 1 + V (x) dt )

(
f + fxa(x)dt+

1

2
b2fxxdt+ ftdt

)
f = f +

(
V (x)f + a(x)fx +

1

2
b2(x)fxx + ft

)
dt .
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This confirms the backward equation (
beFK
11) in the Feynman Kac theory.

The examples are all rather complicated, unfortunately. Take Xt to be
Brownian motion and V (x) = x. Then the backward equation is

∂tf +
1

2
∂2xf + xf = 0 . (12) FKe

You can calculate the solution explicitly as in Exercise
ex:FKe
2. Or you can guess by

trial and error. Either way, we come to the ansatz

f(x, t) = eA(t)x+B(t) .

We plug this into the backward equation (
FKe
12) using the calculations

∂tf =
(
Ȧx+ Ḃ

)
f

∂2xf = ∂x
[
AeAx+B

]
= A2f .

The backward equation takes the form

Ȧxf + Ḃf +
1

2
A2f + xf = 0 .

If you have an equation cx + d = 0, then c = 0 and d = 0. In this case, these
become

Ȧ+ 1 = 0

Ḃ +
1

2
A2 = 0 .

The first equation, together with the final condition A(T ) = 0 (why?) gives
A(t) = T − t. The second equation becomes

Ḃ = −1

2
(T − t)2 .

The solution is B(t) = 1
6 (T − t)3. The full solution is

f(x, t) = e
1
6 (T−t)

3

e(T−t)x . (13) exs

2 Interest rate models
sec:ir

The financial services industry is heavily focused on loans and financial instru-
ments that depend on interest rates. There is a range of stochastic models of
interest rates, but the simple models involve only the short rate (also called
overnight rate), which is the interest rate (in %/year, say) that is paid on a loan
where you “know” it will be repaid very soon (e.g., the next day). Let us call
this rate Rt. One model is

dRt = −γ(Rt − r0) dt+ σdWt . (14) sr
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This is a mean-reverting process centered on an average long term average rate
r0.

A floating rate loan is a loan so that the interest rate at time t is related
to an index of short rate loans at that time such as LIBOR (google this). We
could use the model (

sr
14) as a model of this fluctuating rate. Suppose you make

a loan with floating interest rate Rt to be repaid at time T . The total repayment
amount is a multiplicative function of the initial amount

MT = M0e
∫ T
0
Rs ds .

We may as well set M0 = 1 for simplicity. The value function is

f(r, t) = E[Mt | Rt = r] , Mt = e
∫ T
t
Rs−,ds .

This satisfies the backward equation

∂tf − γ(r − r0)∂rf +
σ2

2
∂2rf − rf = 0 . (15) irf

This has an ansatz solution of the form

f(r, t) = eA(t)r+B(t) . (16) ira

Try it and see. Models like this are called affine because the exponent is an
affine function of r.

3 Change of measure
sec:cm

Change of measure for SDE models is called Girsanov theory. This consists
of a simple formula and a mass of theory telling you when it applies. The
formula is Girsanov’s formula for the change of measure L relating two diffusion
processes. It is defined in terms of exponential integrals. The theory is a theorem
saying that two SDE processes are related to to each other by a change of
measure formula (Girsanov’s formula) if and only if they have the same quadratic
variation. Suppose there are two diffusion processes specified using two SDEs
as

dXt = a1(Xt) dt+ b1(Xt) dWt

dXt = a2(Xt) dt+ b2(Xt) dWt .

These are related by a change of measure if b1 = b2 but not otherwise (the expla-
nation will help you see the “fine print” missing from this simplified statement.).
If b1(x) = b2(x), then it is possible to calculate expected values involving the
first process using paths from the second process – re-weighted by a likelihood
factor – Girsanov’s formula.

It is tricky to figure out when two diffusions are related by a change of
measure, but it is easy to figure out for simple random variables. Nothing
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can go wrong that isn’t obvious. As one example for single random variables,
suppose q represents a standard Gaussian and p represents the standard Cauchy
distribution. The density functions are

q(x) =
1√
2π
e−

1
2x

2

, p(x) =
1

π

1

x2 + 1
.

These distributions are both symmetric and centered around x = 0, but they
have vastly different “tail behavior”. The Gaussian tails are very small, and
large values are quite unlikely. For example, varq(X) = σ2

q = 1 and

Prq(X > σ) ≈ .4 · .2 · 3.7× 10−6 ≈ 3× 10−7 .

[This is from approximations:∫ ∞
a

e−
1
2x

2

dx ≈ e− 1
2a

2

∫ ∞
0

e−ay dy =
1

a
e−

1
2a

2

Prq(X > a) =
1√
2π

1

a
e−

1
2a

2

1√
2π
≈ .4

Prq(X > 5) ≈ .4 · 1

5
· e−12.5 .

]
For the Cauchy distribution the variance is infinite (the integral diverges), but
you can calculate

Prp(X > 5) =
1

π

∫ ∞
5

1

x2 + 1
dx

≈ 1

π

[∫ ∞
5

1

x2
dx−

∫ ∞
5

1

x4
dx+ · · ·

]
≈ 1

π

[
−1

x

∣∣∣∞
5

+
1

3

1

x3

∣∣∣∞
5
− · · ·

]
=

1

π

[
1

5
− 1

3

1

125
+ · · ·

]
≈ 1

3.142 · 5

≈ 1

16− ε
≈ .0625 + ε .

The Cauchy tail probability is a bit over 6% and is larger than the Gaussian by
a factor of about 2 · 105.

Despite the qualitative differences, there is a likelihood ratio relative p and
q. It is

L(x) =

1

π

1

x2 + 1
1√
2π
e−

1
2x

2
=

√
2

π

e
1
2x

2

x2 + 1
.
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This might look bad from the point of view of probability densities because it
grows exponentially at infinity. Nevertheless, the change of measure formula (

aL
6)

is true. If V (x) is non-negative the two integrals are equal and one is infinite
if and only if the other is infinite. The large L(x) for large x is necessary to
“inflate” the small Gaussian tails to the large Cauchy tails.

For single component random variables, a likelihood ratio can overcome any-
thing except exact zeros. If q(x) = 0 for x < 0 (say), and p(x) > 0 for x < 0
(say, q represents an exponential distribution with q(x) = e−x for x > 0 and
zero for x < 0, and p represents the Cauchy distribution). No L(x) can turn a
zero density into a positive density. You can tell when densities are related by
looking at where they are equal to zero.

You can say this in a fancier way using probabilities and “events”. An event
is a set of outcomes that may or may not happen. For example, the probability
that X > 5 is the probability of the event that X > 5. The event is a set of x
values: A = {x | x > 5}. A probability density p(x) determines the probabilities
of events P (A) by

P (A) =

∫
x∈A

p(x) dx .

The probability space is denoted by Ω and is the set of all possible outcomes. For
a one component random variable, this is the set of all (real) numbers, Ω = R.
An event is a subset of Ω. The PDF p assigns a number number P (A) to any
event A. We say that P (A) is the probability measure of A.

The probability density q(x) defines a different probability measure Q(A).
If p can be obtained from q by re-weighting, which is p(x) = L(x)q(x), and if A
is an event with Q(A) = 0 then P (A) = 0 also. I will not explain a proof of this,
because it is more theoretical than we have time for. Still, I hope two things
are clear: (1) for single component random variable distributions described by
probability densities, you can tell which ones are related to which other ones
by looking at where the probability densities are equal to zero, and (2) you
can express this by saying which events have probability zero in the probability
measures defined by the probability densities.

Change of measure is more subtle for diffusions because the probability dis-
tributions are not described by probability densities. The probability space Ω
is the set of “paths”, which are continuous functions of t defined for 0 ≤ t ≤ T .
An event is a subset of Ω, which is a set of paths. Warning: not every subset
of Ω is an event. Even for one component random variables, not every subset
of R is an event. An event must be measurable. The precise definition of mea-
surability is subtle Informally, any event that is defined by a finite number or
a sequence of conditions or inequalities is measurable. That’s why it’s possible
to do so much probability in path space (diffusion processes) without worrying
about events and measurability. If you want to know more about measurability
and related issues, look in a book on real variables or a fancy probability book.
It is possible to be an intelligent user of probability without understanding the
details of probability measures just like it’s possible to be an intelligent user of
calculus without understanding the mathematical definition of real number and
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limit.
Suppose P and Q are two probability distributions (probability measures

is the technical term I try to avoid). For example, they could be given by two
SDEs with a1(x), b1(x), etc. We write X for the whole path X[0,T ]. A likelihood
function L(X) is a function of of the whole path. [Keep in mind that functions
of functions may be called “functionals”.] Suppose V (X) is another functional.
We write EP [V (X)] or EQ[V (X)] for the expected value of V in the two models.
They are related by likelihood ratio L if, for “any” functional V ,

EP [V (X) ] = EQ[V (X)L(X) ] . (17) lr

This looks like the earlier formula (
aL
6), but that one was just about integrals

and probability densities. This one is abstract. The expected values EP [·] and
EQ[·] are abstract probability integrals rather than integrals over a single real
variable x.

The meaning of (
lr
17) is for practical purposes similar to the meaning of (

aL
6).

For example, suppose you can create sample paths Xn by simulation Suppose
you want to know

a = EP [V (X) ] .

Suppose that you can simulate the Q process and know L(X), the latter being
Girsanov’s formula. Then you can estimate a in two ways

(simulate) N paths Xn using P , a ≈ 1

N
V (Xn)

(simulate) N paths Xn using Q , a ≈ 1

N
V (Xn)L(Xn) .

The random variables YP = V (X) when X ∼ P and YQ = V (X)L(X) with
X ∼ Q have different distributions – that’s often the point of change of measure.
But they have the same expected values. The random variable YQ might be more
complicated than YP but it might have less variance. This would make the more
complicated evaluator of a more accurate. It might be that the Q process is a
simplified version of the P process that is easier to simulate. You can get the
same expectation if you compensate using the likelihood ratio.

The basic fact about abstract change of measure is the Radon Nikodym
theorem. It gives a condition under which there ia a likelihood ratio relating Q
to P as in (

lr
17). The condition is that P is absolutely continuous with respect

to Q. This means that if A is any event with Q(A) = 0, then P (A) = 0 also.
A likelihood ratio cannot turn probability zero events into events with positive
probability.

With probability densities, probability zero is easy to diagnose – look where
the probability density is equal to zero. Probability measures are usually defined
by taking limits involving probability densities. It can be hard to tell when the
limiting probability is zero. The expression almost surely often is used in this
context. An event B happens almost surely, in the P probability measure, if
P (B) = 1. This is the same as saying the event A = “not B” has P (A) = 0. The
Radon Nikodym condition can be stated: “If B happens almost surely in the
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Q measure then B happens almost surely in the P measure.” Two probability
measures are called equivalent (for change of measure) if almost sure for either
one implies almost sure for the other.

The opposite of “equivalent” is completely singular (sometimes called “or-
thogonal”, which is a mis-use of that term). Probability measures P and Q are
completely singular if there is an event A with P (A) = 1 and Q(A) = 0. This
may seem unlikely at first, but we will see that it’s common for distributions
defined by different SDEs to be completely singular with respect to each other.
Note that the definition is symmetric with respect to P and Q. If P (A) = 1
and Q(A) = 0, and if B = not A, then P (B) = 0 and Q(B) = 1.

This is not true for “absolutely continuous with respect to”. It is possible
that P is absolutely continuous with respect to Q but Q is not absolutely con-
tinuous with respect to P . For example, suppose x is a one component random
variable, p(x) is the exponential distribution and q(x) is the Gaussian. You
can make q from p by making L(x) = 0 for x < 0, but you can’t make p from
q because q never gives negative numbers. If this example seems artificial, it
is. Most of the time two natural probability measures either are absolutely
continuous or completely singular with respect to each other.

3.1 Almost surely
sec:as

This subsection has examples of “almost surely” in fancier settings. They
come from probability distributions defined by limits (like Brownian motion)
or distributions that depend on infinitely many variables. As an example of
an infinitely-many-variables distribution, consider an infinite sequence of coin
tosses U1, U2, · · · , Un, · · · . Suppose that Uk = 1 with probability p and Uk = 0
with probability 1 − p, and all the Uk are independent. You can ask: what
is the probability that Uk = 1 for all k. The answer is: If p < 1 then
Pr(Uk = 1 for all k) = 0. You can see this with a calculation using the fact
that the Uk are independent

Pr(Uk = 1, k = 1, · · · , n) = pn .

Therefore
Pr(Uk = 1 for all k) ≤ pn , for all n .

Zero is the only probability that is smaller than 1
n for all n. You can make this

a positive statement too: If Uk are independent and Pr(Uk = 1) = p < 1 for all
k, then Uk = 0 for some k almost surely.

Here’s a more subtle example that’s closer to the issue of Section
sec:G
4. Suppose

you estimate p from the sequence Un. A natural estimator from the first n
samples is

p̂n =
1

n
# {Uk = 1 | 1 ≤ k ≤ n}

p̂n =
1

n

n∑
k=1

Uk . (18) phn
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It is a theorem, see Subsection
sec:BC
3.2 that

p̂n → p , as n→∞ almost surely . (19) sc

This is an instance of the strong law of large numbers. Suppose Ap is the event
that p̂n → p as n → ∞. Let Bp be the “complementary” event that the limit
either does not exist or is not equal to p. Then almost surely means Prp(Ap) = 1.
The event Bp “never happens” in the p−world, which is Prp(Bp) = 0.

The probability space of this example is the space of infinite sequences of
zeros and ones. The p−measure is the probability distribution in which the
Uk are independent and Uk = 1 with probability p. Let q 6= p be a different
probability between 0 and 1. We can define the q−measure in which the Uk
are independent and Prq(Uk = 1) = q. The strong law of large numbers for the
q−measure says that p̂n → q as n→∞, almost surely. This means that in the
q−world, it is “almost sure” that limn→∞ p̂n 6= p. Thus

Prq(Ap) = 0 . (20) Apq

In this example we have two measures and a set Ap so that the p−measure of
Ap is one (The measure of an event is its probability.) and the q−measure of
Ap is zero.

3.2 Borel Cantelli
sec:BC

The Borel Cantelli lemma is a clever way to prove that limits happen almost
surely. Here is a slightly non-standard way to explain the idea. It uses three
ideas. First, if Sn ≥ 0 is a sequence of non-negative numbers and if the infinite
sum is finite, then the Sn have a limit

∞∑
n=1

Sn <∞ =⇒ lim
n→∞

Sn = 0 . (21) BCsl

This statement is about any sequence of numbers. It is not probabilistic. Sec-
ond, if R ≥ 0 is a random variable that is allowed to take the value R =∞, and
if the expected value is finite, then R itself is finite almost surely

E[R] <∞ =⇒ R <∞ almost surely . (22) BCff

Third, you can exchange the order of summation and taking expected values for
non-negative numbers

∞∑
n=1

E[Sn] = E

[ ∞∑
n=1

Sn

]
. (23) BCmc

There is a little more about these claims below, but first the consequence.
You can combine all three claims and get

Sn ≥ 0 ,

∞∑
n=1

E[Sn] <∞ =⇒ lim
n→∞

Sn = 0 , almost surely . (24) BC
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Define R to be the sum of the non-negative numbers Sk:

R =

∞∑
n=1

Sn .

The claim (
BCmc
23) tells you that if

∑
E[Sn] <∞, then E[R] <∞. This is the right

side of (
BCmc
23). Then (

BCff
22) tells you that R =

∑
Sn < ∞ almost surely. Finally,

(
BCsl
21) tells you that Sn → 0 as n → ∞ almost surely. This (

BC
24) is a version of

the Borel Cantelli lemma.
I hope the three claims (

BCsl
21), (

BCff
22) and (

BCmc
23) are plausible. The first, (

BCsl
21),

could be an exercise in an “ε − δ” introduction to analysis class. The second,
(
BCff
22) is a version of the inequality, for any m > 0, if R ≥ 0, E[R] ≥ mPr(R ≥ m).

This is a basic fact about probability measures (which are not defined in these
notes). The third, (

BCmc
23) is a version of the monotone convergence theorem. The

random variables

RN =

N∑
n=1

Sn

are a monotone increasing sequence, which means that Rn+1 ≥ Rn. For any
finite n,

N∑
n=1

E[Sn] = E

[
N∑
n=1

Sn

]
= E[RN ] .

When N → ∞, the left side converges to the left side of (
BCmc
23). The monotone

convergence theorem says that the right side converges to the right side of (
BCmc
23).

We apply the Borel Cantelli lemma (
BC
24) and a calculation to prove the claim

(
sc
19). The trick is to define

Sn = (p̂n − p)4 . (25) p4

The power 4 on the right doesn’t change the fact that p̂n − p → 0, but it does
help the sum on the left of (

BC
24) converge. To see that, think about an = 1√

n
.

The sum of an does not converge, but the sum of a4n is the sum of 1
n2 , which is

finite.

an =
1√
n

=⇒
∞∑
n=1

an =∞ , but

∞∑
n=1

a4n =

∞∑
n=1

1

n2
<∞ .

The Borel Cantelli lemma is the conceptual framework of the proof. The tech-
nical part is the calculation which shows that

E
[

(p̂n − p)4
]
≤ 1

n2
. (26) p4c

The inequality (
p4c
26) is the result of calculations that are “straightforward”

(not subtle), but a little complicated. We start with

p̂n − p =
1

n

n∑
k=1

(Uk − p) .
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The Uk on the right comes from the definition (
phn
18) of p̂n. The p on the right

comes from the p on the left and 1
np = p. Note that E[(Uk − p)] = 0. We need

a power of p̂n − p. The trick for that is to express the power as a multiple sum.
For example, the square is a double sum

(p̂n − p)2 = (p̂n − p) (p̂n − p)

=

 1

n

n∑
j=1

(Uj − p)

( 1

n

n∑
k=1

(Uk − p)

)

=
1

n2

n∑
j=1

n∑
k=1

(Uj − p) (Uk − p) .

Therefore

E
[

(p̂n − p)2
]

=
1

n2

n∑
j=1

n∑
k=1

E[ (Uj − p) (Uk − p)] . (27) php2

If j 6= k, then Uj − p is independent of Uk − p and both have expected value
zero. This gives

E[ (Uj − p) (Uk − p)] = 0 , if j 6= k .

The terms with j = k have

E
[

(Uk − p)2
]

= var(Uk − p) = p(1− p) .

There are n terms with j = k, so the sum is

E
[

(p̂n − p)2
]

=
1

n2

n∑
k=1

var(Uk − p)

=
1

n2
n p(1− p)

E
[

(p̂n − p)2
]

=
p(1− p)

n
.

This calculation may be familiar from elementary probability because it is the
calculation that shows that the variance of the sample mean is proportional to
1
n . This rate of “decay to zero” is not fast enough to apply the Borel Cantelli
lemma, because the sum of 1

n is infinite.
We get a better power of n using the fourth power instead of the square.

The reasoning that led to (
php2
27) leads to

E
[

(p̂n − p)4
]

=
1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[ (Ui − p) (Uj − p) (Uk − p) (Ul − p)] .

As for the case with two U − p terms, the expected value is zero if any of the
indices i, j, k, l is not “matched” (equal to one of the others). For example, if
i 6= j and i 6= k and i 6= l, then Ui − p is independent of the other three terms

13



and the expected value of the product is zero. You get terms with non-zero
expectations in one of four ways. The first three ways involve distinct pairs and
the fourth involves all four being equal

i = j , k = l , i 6= k , n(n− 1) terms , E
[

(Ui − p)2 (Uk − p)2
]

= p2(1− p)2

i = k , j = l , i 6= j , n(n− 1) terms , E
[

(Ui − p)2 (Uj − p)2
]

= p2(1− p)2

i = l , j = k , i 6= j , n(n− 1) terms , E
[

(Ui − p)2 (Uj − p)2
]

= p2(1− p)2

i = j = k = l , n terms , E
[

(Ui − p)4
]

= p(1− p)(1− 2p+ 2p2) .

This leads to

E
[

(p̂n − p)4
]

=
3p2(1− p)2(n2 − n)

n4
+
p(1− p)(1− 2p+ 2p2)n

n4
.

Most of the complexity of this expression is irrelevant. What matters here is
whether the sum is finite. The first term on the right has n2 in the numerator
and n4 in the denominator. The other term on the right has n “upstairs” and
n4 “downstairs”. The sum of the first terms is, more or less, the sum of 1

n2

which does converge. This is a proof of the strong law of large numbers (
sc
19) for

this case.

3.3 The Radon Nikodym theorem
sec:RN

The Radon Nikodym theorem is stated above. One way to show two probability
measures are absolutely continuous with respect to each other is to find a formula
for the likelihood ratio. That’s what Girsanov did for diffusions. The other side
of this is finding ways to show that two probability measures are completely
singular with respect to each other.

One approach to this is related to hypothesis testing in statistics. In statis-
tics, a hypothesis is a belief that a random variable X came from a probability
measure P . For example,

4 Girsanov theory
sec:G

Girsanov theory says which diffusion processes are equivalent to each other and
which are not. When two diffusion processes are equivalent, it gives a formula
for L(X), which is Girsanov’s formula. The answer is, skipping the fine print,
that two diffusions are equivalent if they have the same infinitesimal variance
and they are completely singular with respect to each other otherwise. You
can change the infinitesimal mean (the drift) but not the infinitesimal variance
(quadratic variation) with a likelihood function change of measure.

You can see these facts explicitly for Brownian motion. We define dXt =
Xt+dt − Xt. Suppose there is a W−world where Xt is just Brownian motion,

14



with zero infinitesimal mean and unit infinitesimal variance:

EW
[
dXt | X[0,t]

]
= 0

EW
[

(dXt)
2 | X[0,t]

]
= dt .

In the Z−world, there is an adapted infinitesimal mean function at so that

EZ
[
dXt | X[0,t]

]
= atdt

EZ
[

(dXt)
2 | X[0,t]

]
= dt .

The likelihood function that changes measure from W to Z is given by Gir-
sanov’s formula

L(X) = e
∫ T
0
atdXte−

1
2

∫ T
0
a2tdt . (28) G

If V (x) is any path functional defined on [0, T ], then

EZ
[
V (X[0,T ])

]
= EW

[
V (X[0,T ])L(X0,T ])

]
. (29) Gcm

5 Exercises

ex:is 1. Importance sampling is a major application of re-weighting. Even if we
are interested in an expectation with respect to a density p(x), the density
q(x) might give more accurate estimates (lower variance) by putting more
samples in the region that contributes to the expectation. For this exercise,
suppose X is a lognormal random variable of the form X = eσZ+µ. We
want to test simulation based ways to estimate a = E[X]. We have seen
that the lognormal can be very skewed, so that most samples are far
below the mean. Therefore, an importance sampling strategy might be to
simulate instead from a distribution X = esZ+m.

(a) Suppose X = eσZ+µ has p(x) as its pdf and X = esZ+m has q(x)
as its pdf. Write a formula for the likelihood ratio and the expected
value of X as an expectation over q with a likelihood ratio.

(b) Let vars,m be the variance of XL(X) in the q density. Find examples
(using analysis, not simulation) where s 6= σ and m 6= µ has less
variance.

Note: it is cumbersome to work with the lognormal density. This exercise
will be easier if you re-formulate it in terms of normal random variables.
Likelihood ratios for normals are simpler.

ex:FKe 2. Consider the example functional that has backward equation (
FKe
12). Sup-

pose Xt is Brownian motion and consider the random variable

Zx,t =

∫ T

t

Xs ds , conditioned on Xt = x .
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Show that Zx,t is Gaussian and identify the mean and variance. Use that
information to get f(x, t) = E

[
eZx,t

]
. This should agree with the answer

(
exs
13) found by the ansatz.

Apply one or both of these methods to solve the interest rate model (
irf
15)

and (
ira
16). Either find the solution by the ansatz method or find the mean

and variance of the quantity in the exponent directly.

ex:FK2 3. Consider the multiplicative functional in which Xt is Brownian motion
and

Yt = e
∫ T
t
X2

s ds , f(x, t) = E[Yt | Xt = x] .

The random variable in the exponent is not Gaussian, but the Ansatz
method may still apply. Look for a solution using the ansatz method that
involves eA(t)x2

.

ex:cG 4. Consider the Brownian motion with positive constant drift and positive
starting point

dXt = adt+ dWt , X0 = x0 , a > 0 , x0 > 0 .

Let τ be the first hitting time when Xt = 0. Be aware that Pr(τ <∞) < 1,
which means it is possible (there is a non-zero probability) that Xt > 0 for
all t ≥ 0. Make a histogram (write Python code to make a histogram) of τ
for a = .5 and x0 = .3. You need to specify a final time T . Do this by trial
and error, so that there are not many hits after time T . In the code, these
must not be “hard wired”, which means, for example, that the code should
use a variable a that is assigned a = .5. Reproduce the histogram by
simulating Brownian motion directly and putting in the Girsanov change
of measure weight. For this, you have to work with a weighted histogram,
where values of τ come with weights. Part of the exercise is to figure out
how to do this. When you’re computing the Girsanov factor, you need
only integrate up to τ , not the final time T . Why?
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