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1 Introduction to Ito calculus

This class is an introduction to the Ito calculus. The technical highlights are the
Ito integral and Ito’s lemma. These are stochastic calculus tools related to the
chain rule and ordinary (Riemann) integral of ordinary calculus. Integration and
the chain rule are used to understand and solve ordinary differential equations.
These need to be combined with the Ito integral and Ito’s lemma for stochastic
differential equations.

Here is a review of the ODE world in notation taken from the SDE world.
An ODE may be written

dXt = a(Xt) dt . (1)

This is given a rigorous meaning using the ordinary integral:

Xt −X0 =

∫ t

0

a(Xs) ds . (2)

A related statement involves a function of the solution f(Xt). The chain rule
gives

df(Xt) = f ′(Xt) dXt = f ′(Xt) a(Xt) dt .

The integral form of this differential relation is

f(Xt) = f(X0) +

∫ t

0

f ′(Xs) a(Xs) ds .

Again, the informal expression using differentials and the chain rule is equiv-
alent to a formula involving integrals where all the terms have mathematical
definitions. The rigorous integral formulas don’t replace the differential formu-
las. Differential formulas are how people think about dynamics. But integral
versions give us confidence that the informal reasoning is not silly.

For this class, Brownian motion will be denoted Wt, for Wiener process,
after Norbert Wiener. We usually use a standard Brownian motion, which has
W0 = 0, and E[Wt] = 0, and var(Wt) = t. The Ito integral is a stochastic
process, written

Xt =

∫ t

0

asdWs . (3)

This is analogous to the indefinite integral in ordinary calculus. The integrand
is another random process as, which must be non-anticipating, as defined in
Section 3.
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A stochastic differential equation is a dynamical model of the form

dXt = a(Xt) dt+ b(Xt) dWt . (4)

This equation is understood in two ways, which we later will call weak and strong.
The weak interpretation is that Xt is a stochastic process with infinitesimal
mean and variance as explained in Week 1:

E
[
dXt | X[0,t]

]
= a(Xt) dt (5)

var
[
dXt | X[0,t]

]
= b2(Xt) dt . (6)

These relations follow from the informal SDE (4) using the basic properties of
Brownian motion that we “derived” in Week 1 (“motivated” would be more
accurate):

E[ dWt] = 0 (7)

var[ dWt] = dt . (8)

You just take the conditional mean and variance of (4) using these, and you
get the infinitesimal mean and variance expressions (5) and (6). The strong
interpretation is that you can integrate both sides of the SDE (4) from time t1
to time t2 and get get

Xt2 −Xt1 =

∫ t2

t1

a(Xt) dt +

∫ t2

t1

b(Xt) dWt . (9)

The first integral on the right is an ordinary Riemann integral. The second is
an Ito integral with respect to Brownian motion, which is one of the main topics
for this Week.

Section 2 motivates the Ito integral by describing what it would be in discrete
time. This has some of the main ideas of stochastic calculus but without the
mathematical technicalities. Discrete time is easier to explain and sometimes
compute with, but the continuous time limit has simpler formulas and is easier
to reason with, once you become comfortable with it.

The rest of this class is about the continuous time limits, which are limits
as the time increment goes to zero, ∆t→ 0. We have to distinguishing between
small terms and tiny terms. Tiny terms are small enough to ignore in the
continuous time limit. Small terms are too big to ignore.

2 Discrete time strategies

Stochastic models are used to design and optimize strategies. Investors and
traders use stochastic models of unknown future prices to create dynamic invest-
ment and trading strategies. Engineers use stochastic models to design control
algorithms. Random walk models illustrate some conceptual ideas in stochastic
control without the technicality of the continuous time limit. Let Sn be the
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price of an asset (something you can buy or sell) at time n, for n = 0, 1, · · · .
We put ourselves at time n = 0 and imagine that S0 is known to us, but future
prices are not known exactly. We model the price change from time n to n+ 1
as a random variable Yn. The price process is the random walk

Sn =

n−1∑
k=0

Yk .

This may be written as
Yn = Sn+1 − Sn .

Consider a simple trading strategy that consists of owning an “shares” of the
asset at time n. The price changes by amount Yn in going to time n+1, so your
gain or loss is anYn. We assume, in this simplest model, that trading (having
an+1 6= an) is free. We also assume that the trader is a price taker, which means
that any numbers an are allowed (the market has an infinite supply of shares)
and that buying or selling does not effect the price. The value of the “position”
at the beginning of period k is akSk, which is ak shares, each of which has price
Sk. At the end of period k, the price has changed to Sk+1 = Sk +Yk. The value
of the “position” changes by ak(Sk1 − Sk). The total gain up to time n is

Xn =

n−1∑
k=0

ak(Sk+1 − Sk) . (10)

A strategy is non-anticipating (also called adapted or progressively measur-
able) if ak is determined by (Y0, . . . , Yk−1) only. This way, you put a “bet” on
Yk without knowing what Yk will be. A strategy starts with an initial bet a0

that does not depend on the “returns” Yk at all. After that, the bets are a1(Y0),
a2(Y0, Y1), and so on up to ak(Y0, . . . , Yk−1). This is “decision making under
uncertainty”. You use a probability model of the future that may include an un-
certain forecast, but at time k, Yk is to some degree random. A non-anticipating
trading strategy ak produces a sequence of random variables Xn, The questions
are: (1) What random variables can be achieved in this way? (2) Which of these
do you like the best? (3) What strategy give the Xn we like the best?

A particularly important case is when the price process Sn is a simple random
walk. This means that the steps Yk satisfy these three properties:

E[Yk] = 0 , var(Yk) = σ2 , Yk are i.i.d. (11)

In that case, the total gain process (10) has two properties that carry over to the
continuous time versions in Section 3. These are the Doob martingale theorem
and the Ito isometry formula.

The Doob martingale theorem is named for mathematician Joseph Doob.
There are several versions that apply to different kinds of random processes.
They all refer to the conditional expectation of the future value given that you
know the process up to a given time. A process is a martingale if the conditional
expectation of the future value is equal to the known present value, even given
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the whole past history of the process. The theorem is that any non-anticipating
strategy applied to a martingale produces another martingale. You cannot
manufacture a positive expected value by strategizing on a zero expected return
process.

Here is one theorem in the family of Doom martingale theorems. We call a
sequence (S0, S1, · · · , Sk, · · · , Sn) a discrete path. The time variable k is discrete
but the value Sk might be continuous or discrete. The process is a martingale
if the conditional expectation of the future value is the present value:

E[Sn+1 | (S0, . . . , Sn) = (s0, . . . , sn)] = sn . (12)

The martingale property be stated in terms of the increments (also called mar-
tingale differences), given equivalently in increment or difference form:

Sk+1 = Sk + Zk , Sk+1 − Sk = Zk .

It is
E[Zn | (S0, . . . , Sn) = (s0, . . . , sn)] = 0 . (13)

You can see this by noting that Zn = Sn+1 − sn (unknown value minus known
value), conditional on knowing Sn.

The martingale property and the Markov property seem similar, but they
are not the same. A Markov process does not have to be a martingale. In fact,
we will see that the infinitesimal mean formula (5) implies that an SDE process
is a martingale only if the infinitesimal mean (the drift) is zero. Continuous
time martingales are defined in Section 3. Going the other way, the distribution
of a martingale increment may depend on the whole path up to step n. In a
Markov process, the distribution of the increment would depend on sn only.
For example, if the numbers Yk satisfy the unbiased random walk properties
(11), then the following (nonsensical but allowed) dynamical formula defines a
martingale:

Sn+1 = Sn + Sn−1Yn + Sn−2(Y 2
n − σ2) .

All the last two terms on the right both have expected value zero, even knowing
the values Sn−1 = sn−1 and Sn−2 = sn−2. The distribution of the increment
may depend on the whole path, but no matter which path up to time n, the
increment has mean zero.

A caution: it is possible that the unconditional increments have mean zero
even though the process is not a martingale. The unconditional expected value
is

E[Sn+1 − Sn] .

This can be zero even though the conditional expected values (13) are not all
zero. On the other hand, if SN is a martingale, then the unconditional means are
zero because of what in stochastic processes is often called the tower property:
the unconditional mean is the mean of the conditional means. Exercise 1 has
an example of this.

Finally, the Doob theorem for this kind of martingale says that if Sn is a
martingale, and Xn results from the sequence Sk by a strategy of the form (10),

4



and if the strategy “weights” ak are non-anticipating, then Xn is a martingale.
The proof is simple. A strategy is non-anticipating means that an is some
“strategic” function of everything that has come before, which means that we
may write

an = a(s1, · · · , sn, n) .

The function on the right refers to any a that can be determined from the values
up to time n. The strategy may depend on n also. The increment of the X
process is Zn = Yna(S1, · · · , Sn, n). Its conditional expectation, given the S
path up to n, is

E[Yna(S1, · · · , Sn, n) | S1 = s1, · · · , Sn = sn]

= E[Yn | S1 = s1, · · · , Sn = sn] · a(s1, · · · , sn, n)

= 0 .

The constant a(s1, · · · , sn, n) comes outside the expectation because it is just a
number, not a random variable.

Doob’s martingale theorem has been interpreted informally as saying that
there is no benefit in fancy trading strategies. I disagree with that view. Active
strategies cannot turn a martingale into an expected profit, but they can give
lower risk for the same expected return. This is discussed more in the class of
Week 5.

The Ito isometry formula for this situation (fancier ones are coming) is

E
[
X2
n

]
= σ2

n−1∑
k−0

E
[
a2
k

]
. (14)

In this theorem the sequence Xn is constructed from the sequence Sn by any
non-anticipating strategy (10), and Yk is an i.i.d. mean zero sequence (11).
Here is a proof of the isometry formula using ideas that will become familiar in
this course. We write Xn as a sum, writing the formula twice with a different
summation index

Xn =

n∑
k=1

akYk =

n∑
j=1

ajYj .

The strategy coefficients ak could be complicated functions of Y1, · · · , Yk−1. The
proof starts with the trick of using both sums to express the square, and then
interpreting the product of sums as a sum of products:

E
[
X2
n

]
= E

( n∑
k=1

akYk

) n∑
j=1

ajYj


= E

 n∑
k=1

n∑
j=1

akYkajYj


=

n∑
k=1

n∑
j=1

E[ akajYkYj ] .
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The next step is to look at the individual terms and separate them into three
groups: those with j = k (the diagonal terms), the ones with j < k and the
ones with j > k. If j = k, the term is

E
[
a2
kY

2
k

]
= E

[
a2
k

]
E
[
Y 2
k

]
= σ2E

[
a2
k

]
.

The first equality is true because ak is independent of Yk. That’s true because
Yk is independent of all the other Yj and ak is a function only of those other Yj .

Next, look at the off-diagonal terms with k > j. For those, we have

E[ akajYkYj ] = E[Yk] E[ akajYj ] = 0 · E[ akajYj ] = 0 .

This is true because Yk is independent of everything else. The off-diagonal
terms with j > k also vanish, using similar reasoning. Thus, the double sum
representing E[X2

n] reduces to the sum of its diagonal terms. These are the
terms in the isometry formula (14).

The name isometry formula comes from the mathematical terminology in
which a transformation that does not change sizes is called an isometry. In this
case, one of the objects is the sequence of random variables ak. The size of this
sequence is given by the sum of the expected squares (a kind of L2 norm for
fancy mathematicians). The other object is the random variable Xn, whose size
is measured by E[X2

n]. You don’t have to understand this explanation, but it
may help you remember the name of the formula.

3 Strategies in continuous time

Last week we saw that Brownian motion is continuous time limit involving
random walk. The Ito integral (3) is the corresponding continuous time limit
of the “strategy” sum (10). It is an idealization of a situation where the price
changes happen quickly and the strategy changes just as fast. Suppose that
Wt is standard Brownian motion and that it represents the price of an asset at
time t. Choose a small ∆t that represents the time scale on which the price can
be reported and the strategy can change. This divides time into time periods
labelled by starting times tk = k∆t. At time tk, the agent places a “bet” of size
atk on the asset. The price change over the next period is Wtk+1

−Wtk . The
profit or loss is

atk
(
Wtk+1

−Wtk

)
.

The total profit up to time t is

X∆t
t =

∑
tk<t

atk
(
Wtk+1

−Wtk

)
. (15)

The Ito integral with respect to Brownian motion is the limit as ∆t→ 0

Xt =

∫ t

0

as dWs = lim
∆t→0

∑
tk<t

atk
(
Wtk+1

−Wtk

)
. (16)
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The continuous time limit ∆t → 0 is like the continuous time limit of the
Riemann (ordinary) integral∫ t

0

bs ds = lim
∆t→0

∑
tk<t

btk∆t . (17)

The Riemann integral limit exists as long as bt is a continuous function of t.
The Ito integral limit (16) exists if at is continuous and adapted. Adapted

(the same as non-anticipating in Section 2) means that at can be random, but
the randomness is a function of the path up to time t. This means that there is
a function A(w[0,t], t) so that

at = A(W[0,t], t) .

For example, you could ignore the random part and take at = t2. The Ito
integral would be the random variable

Xt =

∫ t

0

s2 dWs .

Another example is at = Wt. This example is worked out in Section 4. This
choice is non-anticipating (adapted) because 1 + Xt depends on Ws for s ≤ t.
An important example involves the integral equation

Xt = 1 +

∫ t

0

Xs dWs .

The integrand on the right, which is at = Xt, is adapted because of the integral
formula. The left side, Xt, is defined in terms of Ws for s < t. Integrals like this
come up in solutions of stochastic differential equations we will see in Week 4.

The limit (16) is a sequence of random variables X∆t
t converging to another

random variable Xt. There are several kinds of convergence for random vari-
ables like this, including convergence in distribution, convergence in probability,
and convergence almost surely. Convergence in distribution means that the
probability distribution of the random paths X∆t

t converges to the probability
distribution of the path Xt. This says that simulating the process X∆t

t gives
results similar to the theoretical process Xt that we cannot simulate exactly.
Convergence in probability is the statement that for every ε > 0

Pr
( ∣∣X∆t

t −Xt

∣∣ > ε
)
→ 0 as ∆t→ 0 .

This would be natural if you were trying to estimate Xt using X∆t
t . It might be

less natural here because there usually is no independent way to estimate Xt.
Almost sure convergence says that “with probability 1” the limit formula (16)
is true. The Week 6 class has more to say about the phrase “with probability
1”, which is what probability people mean by “almost surely”. Almost sure
convergence is both the hardest to prove theoretically and the hardest to check in
computations. You would have to do a sequence of simulations with decreasing
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∆t. For convergence in probability, you do one simulation with a single ∆t.
The smaller ∆t is, the less likely you are to be off by more than ε. For almost
sure convergence, you have to be unlikely ever to be wrong by more than ε
as ∆t → 0. A longer version of this Stochastic Calculus course had one class
devoted to a proof that the limit formula (16) is true in probability.

There is a Doob martingale theorem for the Ito integral (16). The theorem
is that if at is non-anticipating then Xt is a martingale. The definition of
martingale in continuous time is Xt is a martingale with respect to the Brownian
motion path W if

E
[
Xt+s |W[0,t]

]
= Xt . (18)

In this statement, W[0,t] is the Brownian motion path on the time interval [0, t].
Part of the statement in (18) is that Xt is a function of W[0,t]. This is true if
Xt is an Ito integral with respect to W . This definition is a little different from
the definition of martingale in discrete time. In discrete time, the definition
involved Xn and Xn+1, This is the discrete time process X at time n and the
next time n + 1. In continuous time, there is no “next time”. That’s why the
definition (18) refers to all times s > t.

The proof of this version of Doob’s theorem is just from definitions and
limits. The Ito integral is the continuous time limit (∆t→ 0) of a discrete time
sum (15). Therefore, X∆t

t is a martingale, as was explained in Section 2. The
full mathematical proof is a little involved, because X∆t

t is a martingale only at
the discrete times tk. These get more finely spaced in the continuous time limit.
It is a basic technical theorem in probability that if a discrete time martingale
converges in this way, the limit is a continuous time martingale.

The continuous time Ito isometry formula for this kind of Ito integral is

E
[
X2
t

]
=

∫ t

0

E
[
a2
s

]
ds . (19)

You prove this by using the discrete time Ito isometry theorem (14) and taking
the continuous time limit. The parameter σ2 in the discrete time formula is
the variance of the martingale difference. The martingale difference for X∆t

t is
∆Wk = Wtk+1

−Wtk . The variance of that is

σ2 = var(∆Wk) = E
[

(Wtk+∆t −Wtk)
2
]

= ∆t .

Therefore the discrete time formula (14) implies that

E
[ (
X∆t
tn

)2]
= ∆t

n−t∑
k=0

E
[
a2
tk

]
.

In the continuous time limit, the right side in the sum converges to the Riemann
integral on the right side of the continuous time isometry formula (19).

It is important to keep in mind that the approximation formula (15) requires
∆Wk to be in the future of tk.
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4 An example

The example at = Wt illustrates many features of the Ito integral. The calcula-
tion that leads to (??) is one of the important ideas in Ito’s lemma in Section 5.
The calculations show what can go wrong if you make an approximation to the
Ito integral. Suppose at is a non-anticipating strategy. It is possible that atk+1

“knows” the price change over the period Wtk+1
−Wtk . A trading “strategy”

(not a strategy you can use because it knows the future) using the future a value
might be

B∆t
t =

∑
tk<t

atk+1
(Wtk+1

−Wtk) . (20)

You might think using atk+1
instead of atk is not serious because it only looks

∆t into the future. At the end of this section, we calculate an example that
shows that even this small change can give a different continuous time limit.

We find an explicit formula for

Xt =

∫ t

0

WsdWs .

This at is adapted because it depends on the path Ws for s ≤ t. We will see
that the limit (15) exists. With the formula for Xt, we will be able to verify that
Xt is a martingale (Doob’s theorem) and the Ito isometry formula. We will see
that other ways to define the integral, ways that give the same answer for the
Riemann integral (the ordinary integral from calculus) are not equivalent for
the Ito integral and give different limits. It is crucial to put ∆W = Wtk+1

−Wtk

in the future of atk . From the strategy point of view, it is important that at
you make the bet at time tk when you do not know whether ∆W is positive or
negative.

We simplify the calculations by writing Wk instead of Wtk . In this notation,
the approximation (15) is

X∆t
t =

∑
tk<t

Wk (Wk+1 −Wk) .

The trick for evaluating this (which is in all the books) is the clever formula

Wk =
1

2
(Wk+1 +Wk)− 1

2
(Wk+1 −Wk) . (21)

Using this, we get

X∆t
t =

1

2

∑
tk<t

(Wk+1 +Wk) (Wk+1 −Wk)− 1

2

∑
tk<t

(Wk+1 −Wk)
2
. (22)

For the first sum on the right, note that (Wk+1 +Wk) (Wk+1 −Wk) = W 2
k+1 −

W 2
k . The largest k value in the sum is nt = max {k|tk < t}. The first sum is∑

tk<t

(Wk+1 +Wk) (Wk+1 −Wk) =
∑
tk<t

(
W 2
k+1 −W 2

k

)
=

1

2
W 2
nt
.
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This converges to 1
2W

2
t , because |t− tnt | ≤ ∆t.

The other term involves the quadratic variation

Q∆t
t =

∑
tk<t

(Wk+1 −Wk)
2
.

We evaluate the ∆t → 0 limit by calculating the mean and variance of Q∆t
t .

The mean has a clear limit and the variance goes to zero as ∆t→ 0. This gives
the limit in probability of Q. [Limit in probability was defined in Week 1.] Since
∆W is an increment of Brownian motion over a time interval of length ∆t, the
variance is equal to ∆t. Therefore:

E
[
Q∆t
t

]
=
∑
tk<t

E
[

(Wk+1 −Wk)
2
]

=
∑
tk<t

∆t

= tnt
.

This shows that E
[
Q∆t
t

]
→ t as ∆t→ 0.

For the variance, we subtract the mean of Q, which is tn1
=
∑

∆t, which
leads to

var
(
Q∆t
t

)
= E

[ (
Q∆t
t − tnt

)2]
= E

(∑
tk<t

[
(Wk+1 −Wk)

2 −∆t
])2


var
(
Q∆t
t

)
= E

(∑
tk<t

Rk

)2
 (23)

with

Rk = (Wk+1 −Wk)
2 −∆t .

We use the square of a sum = sum of products trick we used before. The result
is:

var
(
Q∆t
t

)
=
∑
tk<t

∑
tj<t

E[RkRj ] .

The diagonal terms have (see Exercise 3) for the last line)

E
[
R2
k

]
= E

[
(Wk+1 −Wk)

4
]
− 2E

[
(Wk+1 −Wk)

2
]

∆t+ ∆t2

E
[
R2
k

]
= 2∆t2 . (24)

The off-diagonal terms vanish because of the independent increments property.
For example, if k 6= j, then Rk is independent of Rj and both have expected
value zero.
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We finish the calculation with another simple trick. The variance (??) is
given by the sum of the diagonal terms

var
(
Q∆t
t

)
=
∑
tk<t

2∆t2

= 2∆t ·
∑
tk<t

∆t

≈ 2∆t · t .

The approximation ≈ is exact if t is one of the discrete times tk. Otherwise the
error is less than ∆t. Either way, var

(
Q∆t
t

)
→ 0 as ∆t→ 0. Therefore Q∆t

t → t
in probability.

All this gives the result∫ t

0

Ws dWs =
1

2
W 2
t −

1

2
t . (25)

The second term is the “Ito term”, which has no analogue in the Riemann
integral. If Wt were a differentiable function of t, we would calculate∫ t

0

Ws dWs =

∫ t

0

Ws
dWs

ds
ds =

1

2

∫ t

0

d

ds

(
W 2
s

)
ds =

1

2
W 2
t .

The Ito result is different from this. Without the Ito term, the formula would
not satisfy the Doob martingale theorem or the Ito isometry formula (Exercise
4).

You will be happy to learn that we rarely evaluate Ito integrals directly from
the definition in this way. Instead Ito’s lemma plays the role of the fundamental
theorem of calculus for the Riemann integral. We try to find the “anti Ito
derivative”. That almost never leads to a simple formula for the integral, even
for the simpler Riemann integral it doesn’t.

The anticipating (not non-anticipating) approximation (20) for this example
gives

B∆t
t =

∑
tk<t

Wk+1 (Wk+1 −Wk) .

The trick (21) gives something that differs from (22) by a minus sign

B∆t
t =

1

2

∑
tk<t

(Wk+1 +Wk) (Wk+1 −Wk) +
1

2

∑
tk<t

(Wk+1 −Wk)
2
.

The limit of this is calculated in the same way:

Bt =
1

2
W 2
t +

t

2
.

Unlike the Ito answer (25), this bad answer is not a martingale. You can define
a Riemann integral, using either endpoint of the interval, or the midpoint. That
is not true for the Ito integral. It has to be the beginning of the interval: atk ,
not atk+1

. Anticipating, even by just ∆t, changes the answer.

11



5 Ito’s lemma for Brownian motion

Ito’s lemma is an expression for the small change in a function of Brownian
motion in a small increment of time. Consider a process that is a function of
Wt and t,

Xt = f(Wt, t) .

This process involves the function f(w, t) with partial derivatives ∂wf , etc. Ito’s
lemma is the formula

dXt = ∂wf(Wt, t) dWt +

(
∂tf(Wt, t) +

1

2
∂2
wf(Wt, t)

)
dt . (26)

This is a convenient but informal expression.
We think of the differential Ito’s lemma formula as a relation between dXt,

dWt and dt. To prove it, or to understand why it’s true, we replace it with a
corresponding integral formula. The idea is that dXt is the change of X in time
dt. If you add up, or integrate, all these small changes, you get the total change:∫ t2

t1

dXt = Xt2 −Xt1 . (27)

The integral form of Ito’s lemma is the formula you get by integrating both of
the terms on the right side of the differential formula (26):

Xt2−Xt1 =

∫ t2

t1

∂wf(Wt, t) dWt +

∫ t2

t1

(
∂tf(Wt, t) +

1

2
∂2
wf(Wt, t)

)
dt . (28)

This is the stochastic calculus version of the fundamental theorem of calculus.
Ito’s lemma is a version of the chain rule appropriate for Brownian motion.

In the ordinary chain rule concerns a differentiable function of t, which we write
as Ut. The chain rule formula, in language of ordinary calculus language, is

d

dt
f(Ut, t) = ∂uf(Ut, t)

dUt
dt

+ ∂tf(Ut, t) .

In the informal stochastic calculus language of differentials, this would be

df(Ut, t) = ∂uf(Ut, t) dUt + ∂tf(Ut, t) dt .

The Ito expression (26) includes the second derivative term involving ∂2
wf , which

is not present in the ordinary calculus chain rule.
There is an informal “derivation” of Ito’s lemma that tells you how to re-

member it but not why it’s true. You just expand df(Wt, t) to second order and
apply “Ito’s rule”, which is (dWt)

2 = dt. You get

df = f(Wt + dWt, t+ dt)− f(Wt, t)

= ∂wfdWt +
1

2
∂2
wf (dWt)

2
+ ∂tfdt

= ∂wfdWt +
1

2
∂2
wfdt+ ∂tfdt .

12



A real derivation, one that explains why it’s true, would have to explain why
you expand to second order in W but not in t, among other things.
Example. Here is the Ito’s lemma approach to the example of Section 4.
Consider the function f(w, t) = 1

2w
2. This has derivatives

∂wf = w

∂2
wf = 1

∂tf = 0 .

From Ito’s lemma in differential form (26) we calculate

d

(
1

2
W 2
t

)
= WtdWt +

1

2
dt .

We can integrate this, and we get

1

2
W 2
t =

∫ t

0

WsdWs +
1

2
t .

This is the formula (25) we had in Section 4. Another way to do this is to take
f(w, t) = 1

2w
2 − 1

2 t. In this case, the partial derivatives are

∂wf = w

∂2
wf = 1

∂tf = −1

2
.

The answer (25) comes from integrating this.

Example.This calculation allows us to understand some surprising features of
geometric Brownian motion. If f(w, t) = ew, then the partial derivatives are

∂wf = ew

∂2
wf = ew

∂tf = 0 .

Therefore,

d
(
eWt

)
= eWt dWt +

1

2
eWt dt .

A more general f = eaw+bt has partial derivatives

∂wf = af

∂2
wf = a2f

∂tf = bf .

Therefore, if
Xt = f(Wt, t) = f = eaWt+bt ,

13



then

dXt = aXt dWt +

(
b+

1

2
a2

)
Xt dt .

The dt term disappears if we choose b = − 1
2a

2. This gives the process

Xt = eaWt− 1
2a

2t ,

that satisfies dXt = aXtdWt, or, in integral form,

XT −X0 = a

∫ T

0

XtdWt .

Exercise 5 explores this process. The Week 5 class has much more about geo-
metric Brownian motion.

The proof of Ito’s lemma starts with a discrete version of (27):

XT2
−XT1

≈
∑

T1≤tk<T2

∆Xk .

This uses the same notation system, with ∆Xk = Xtk+1
−Xtk . Some Taylor ap-

proximations give the local approximation that is something like the differential
form of Ito’s lemma (26)

∆Xk = ak∆Wk + bk∆t+Rk . (29)

We add these up:∑
T1≤tk<T2

∆Xk =
∑

T1≤tk<T2

ak∆Wk +
∑

T1≤tk<T2

bk∆t+
∑

T1≤tk<T2

Rk

= S∆t
1 + S∆t

2 + S∆t
3 .

This formula uses the informal notation ak = a(tk), bk = b(tk), and ∆Wk =
Wtk+1

−Wtk . In the limit ∆t → 0, the left side sum converges to XT2
−XT1

.
The right side sum S∆t

1 converges to the Ito integral

S∆t
1 =

∑
T1≤tk<T2

ak∆Wk →
∫ T2

T1

atdWt . (30)

The second sum converges to the Riemann integral (the “ordinary” integral)

S∆t
2 =

∑
T1≤tk<T2

bk∆t →
∫ T2

T1

btdt . (31)

The last sum vanishes in the limit:

S∆t
3 → 0 , as ∆t→ 0 .

14



The terms with non-zero limits (30) and eqrefS2 converge to the integrals on
the right side of (28).

There is some informal language for this. When ∆t is small, all the terms on
the right of the expression (29) for ∆Xk are small. The term ak∆Wk is small,
but when you add them together in the sum (30) the answer is not small. As
∆t→ 0 the number of terms in the sum goes to infinity in a way that the limit
is finite. The terms bk∆t are small in the same sense. There are enough small
terms bk∆t in the sum (31) to get a non-zero answer as ∆t→ 0. The terms Rk
are smaller than small, so we call them tiny. Being tiny means that they are so
small that even when you add them up the result goes to zero. The art in Ito’s
lemma is being able to tell which terms are small and which are tiny.

When Xt = f(Wt, t), we can use Taylor expansion to get

∆Xk = ∂wf∆Wk +
1

2
∂2
wf∆W 2

k + ∂tf∆t+ (∗)∆W 3
k + (∗∗)∆Wk∆t .

The terms (∗) and (∗∗) are remainder terms in the Taylor series. The terms are
“tiny” because, for example

E
[∑

|∆Wk|3
]
∼ (T2 − T1)∆t .

The Ito rule (??) comes from the fact that this term also is tiny:

1

2
∂2
wf
(
∆W 2

k −∆t
)
.

The calculation to show this is like the calculation in Section 4.

E


 ∑
T1≤tk<T2

∂2
wfk

(
∆W 2

k −∆t
)

2
 ∼ (T2 − T1)∆t .

This shows that the error term goes to zero in distribution as ∆t → 0. As a
result, you can do the replacement

∑
T1≤tk<T2

∂2
wfk∆W 2

k =⇒
∑

T1≤tk<T2

∂2
wfk∆t →

∫ T2

T1

∂2
wf(Wt, t) dt .

6 Exercises

Notes on computational exercises. Each computational exercise is sup-
posed to be a small research project. It will take some time to get a code
working with well formatted output and graphs, but once you’ve done that, you
should spend some time “playing” with the code using your natural curiosity.
See what you can get it to do and think about why it might do that. The grader
will reward creative computational work.
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1. Suppose X0 = 0, and, for n > 0,

Xn+1 = rXn + Yn .

Show that if the Yk satisfy (11), then Xn has the zero mean property
E[Xn] = 0 but is not a martingale. This process is called mean reverting
if |r| < 1. It mean reverts to the to zero if X0 = 0.

2. The gambler’s ruin paradox is an apparent paradox about martingales.
The gambler makes a sequence of bets on i.i.d. random variables Yn with
Pr(Yn = 1) = Pr(Yn = −1) = 1

2 (we call these “coin tosses” or “fair” coin
tosses). The first bet is a0 = 1. The strategy is to double the bet each
time you lose (get Yk = −1) and stop betting the first time you win (get
Yk = 1). In other words

ak =

{
0 if Xk = 1
2k otherwise.

Here, Xk given by (10) with this strategy. The strategy is called “double
or nothing”.

(a) Find the possible values of Xn, calculate the probabilities of these
values and show explicitly that E[Xn] = 0. How is this related to the
martingale property?

(b) Show that “the gambler eventually wins” by showing that Pr(never wins) =
0. The event “never wins” is the same as “lose at step 0, then lose
at step 1, then · · · ”. This seems to be a violation of the Doob mar-
tingale theorem because it a a guaranteed (probability 1) gain of $1
betting on a martingale. Note that Doob’s theorem, as given above,
applies only at finite time n. Part (a) shows the conclusion is valid
for any finite time.

(c) Let pw = Pr(Yn = 1) and suppose pw < 1
2 . Show that any strategy

with ak ≥ 0, other than ak = 0 for all k, has an expected loss at any
finite time, but the gambler still wins $1 with probability 1 if allowed
to play arbitrarily long.

(d) Suppose the gambler has a “capital requirement”, that he is not al-
lowed to bet ifXn < −R. Let pB = Pr(hit the capital limit before winning $1).
This is the probability that the gambler “blows up” (a term for
traders who are forced to stop trading because they lose too much
money). Show that pb → 0 as R→∞.

The book Fooled by Randomness by Nassim Taleb makes the same
point this exercise is making. A trader has ways to seem good by
“beating the market” most of the time. These strategies don’t have
positive expected returns and are dangerous.
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3. Suppose Y ∼ N (0, σ2). Show that var
(
Y 2
)

= 2σ4. For this, you probably
need to verify that∫ ∞

−∞
z4e−

1
2 z

2

dz = 3

∫ ∞
−∞

z2e−
1
2 z

2

dz .

4. Verify that the example (25) satisfies the continuous time Doob martingale
theorem (the right side is a martingale) and the Ito isometry formula. For
the isometry formula, it may help to do Exercise 3 first.

5. Download and run the code ProportionalStrategy.py. It should make
a plot file that matches the posted ProportionalStrategy.pdf. This
computation demonstrates the convergence in distribution of the Ito in-
tegral in the continuous time limit. The code computes the Ito integral
corresponding to the following trading strategy. At time t, your wealth
is Xt. You invest rXt by betting on the Brownian motion outcome dWt.
This makes your gain or loss rXtdWt. The Ito integral adds this up, to
give the wealth process

Xt = 1 +

∫ t

0

rXsdWs .

The integrand is as = rXs. It is adapted because it depends on the
Brownian motion increments only up to time s. The code approximates
the integral with a sum of the type (15). Please “play with” the code
by seeing what happens when you change parameters. Here are some
suggestions, but you don’t have to do just this.

(a) Increase the value of r and see that the large ∆t curve is lower than
the others. Why?

(b) The Ito isometry formula in this case is

var(XT ) =

∫ T

0

E
[
a2
t

]
dt .

Explain how to get this from (19). Warning: what is called Xt there
is not what is called Xt here. Check this conclusion numerically by
getting the left side from the simulated XT values and the right side
from the the third return value of the function sim(...). The results
should be presented in a small well formatted table. You can borrow
from the Week 1 code to make a good table.

(c) (extra credit, do only if time permits) Example 2 of Section 5 explains
how to derive a relation between XT and WT . Check whether this
relation is satisfied as ∆t → 0. Present results in the form of a
comparison of two or more cdf functions.
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6. (This is for “extra credit” and is not required as part of the assignment
for Week 2. Do this only if you have extra time.)

Merton’s theory of default is a proposal for evaluating the default risk of a
corporate bond. In a simplified version, a company agrees to pay a coupon
which is c dt in time dt. This is a continuous time idealization of real bonds
that pay coupons are regular and frequent but discrete times. Assume
there is a discount rate ρ and that the present value of a payment at
time t is discounted by a factor e−ρt. Suppose the payments are supposed
to continue to time T , but the payment may end at time τ < T if the
company defaults at time τ . The “wedge” ∧ mean “minimum”, so the
payments end at time T ∧ τ . The total present value of the coupons is the
random variable

Y =

∫ T∧τ

0

e−ρt dt .

There is a simple formula for the integral.

Merton’s “theory” is a model of the random variable τ . In this theory, the
company (the firm) has a wealth Xt that is given by a process like the one
of Exercise 5. There is a “drawdown level” xd < 1 so that the company
defaults at the first time when Xt hits xd.

τ = min { t | Xt = xd} .

Modify the code ProportionalStrategy.py to make a cdf of Y and esti-
mate its expected value. It should use a sequence (not a long sequence) of
∆t values and observe convergence. Choose values of r and T and xd so
that default is reasonably likely and non-default (by time T ) is also likely.

Notes on the exercises

1. If you are trying to decide whether some mathematical statement is true
or not, try it on the simplest examples you can think of. The linear auto-
regressive process should be on your list of examples.

2. If Xn is a sequence of random variables and Xn → X as n → ∞, it
might be that E[Xn] does not converge to E[X]. For example, if Xn = 2n

with probability 2−n and Xn = 0 otherwise. This has [Xn] = 1. To go
from n to n + 1, “toss a coin” and take Xn+1 = 2Xn with probability 1

2
and X[n + 1] = 0 otherwise. This is “double or nothing”. These simple
examples have relevance in finance.

3. The Ito isometry formula says two things are equal. Both are expected
values of squares, so it might not be clear just how different they are. This
exercise exercise emphasizes the difference.

4. You can learn the relation between probability distributions for two one
component random variables by comparing the CDF. The CDF turns out
not to be a strong differentiator between distributions.
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(a) Until you do this, it looks like you get accurate answers with a rather
large ∆t. This disappears when you try a harder problem. See why
this goes wrong and you’ll have a feel for geometric Brownian motion.

(b) Part of this problem is taking the time to make good output. You
might be curious why the results are so good.

(c) This is another demonstration of the convergence of the Ito integral
and the meaning of Ito’s lemma.

5. Default modeling is one of the hard and important issues in finance. Mer-
ton’s model is one of the classics that people build from. From a stochastic
calculus point of view, this exercise illustrates the convergence of the dis-
tribution of the path X[0,T ], not just the distribution of XT . The hitting
time τ is a function of the whole path, not just one value.
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