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Tentative (more text, no more exercises)

The two topics for this week both involve putting integrals in the exponential.
For the Feynman Kac formula, the integral is dt. For the Girsanov change of
measure formula, the integral is dWt. If Xt is an Ito process, then another Ito
process is

Yt = eXt .

We can apply Ito’s lemma with f(x) = ex, and ∂xf(x) = ex = f(x), and
∂2
xf(x) = f(x). The result is, using Yt = eXt on the right side

dYt = Yt dXt +
1

2
Yt (dXt)

2 . (1)

If Xt is a dt integral (Feynman Kac), then the second term on the right is zero.
The Feynman Kac “formula” is used in finance to study models of fluctuating

interest rates. Suppose the interest rate at time t is Xt, and a “money market
account” at time t has value Mt. Then Mt+dt = (1+Xtdt)Mt. This is expressed
as

MT = M0e
∫ T
0
Xtdt .

The Feynman Kac formula is related to expected values of expressions like this.

1 Feynman Kac Formula

The Feynman Kac formula, as the term is used in finance, is a relationship
between a multiplicative value function and the backward equation it satisfies.
Suppose Xt is a diffusion process that satisfies the SDE

dXt = a(Xt) dt+ b(Xt) dWt . (2)

A multiplicative functional is a function of the diffusion process path of the form

e
∫ T
0
V (Xs) ds . (3)

This is called multiplicative because you can think of it as multiplying together
the individual pieces V (Xs)ds. You can see this more explicitly by choosing a fi-
nite ∆t approximation to the integral. As usual, tk = k∆t. We can approximate
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the functional as

e
∫ T
0
V (Xs) ds ≈ exp

{∑
tk<T

V (Xtk)∆t

}

=
∏
tk<T

eV (Xtk
)∆t . (4)

Moreover, you can use the exponential approximation eε ≈ 1 + ε to write the
approximation is ∏

tk<T

eV (Xtk
)∆t ≈

∏
tk<T

[ 1 + V (Xtk) ∆t ] .

To be even more explicit, suppose you define the product of the first n factors
to be

Pn =

n−1∏
k=0

[ 1 + V (Xtk) ∆t ] .

Then
Pn+1 = [ 1 + V (Xtn) ∆t ]Pn .

This has the interpretation as an interest payment. The “account” at time n
is Pn. As we go from time n to time n + 1, we receive a payment of Vn∆tPn.
This is the payment, for example, if V is an interest rate in years and ∆t is
measured as a fraction of a year. The final amount Pn is random because the
interest rates Vk = V (Xtk) are random.

The value function corresponding to the multiplicative functional is

f(x, t) = E
[
e
∫ T
t
V (Xs) ds | Xt = t

]
. (5)

There may be other ways to define a value function if we are interested in the
functional with the integral starting at time t = 0. If you take the integral
starting at time t, then functional in the value function (5) does not depend on
Xs for s < t. That means that the expectation on the right is a function of x
and t alone, not the path that got you there.

We can find the backward equation PDE that f satisfies using a variant of
the martingale method we used in Week 4. Consider a small time dt, take d of
both sides, use Ito’s lemma, and set the dt parts equal, ignoring the dW part.
On the left, you have

df(Xt, t) = ∂tfdt+ ∂xf dX +
1

2
∂2
xf(dX)2 .

We identify the infinitesimal mean (the dt part) from the SDE (2) using the Ito
rule (dX)2 = b2dt. The result is

df(Xt, t) = ∂tfdt+ a(x)∂xfdt+
1

2
b2(x)∂2

xf + ∂xfb(x)dWt .
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On the right, we can use the Ito calclation (1) to get

de
∫ T
t
V (Xs) ds = d

(∫ T

t

V (Xs)ds

)
e
∫ T
t
V (Xs) ds

= −V (x) dt e
∫ T
t
V (Xs) ds .

For the second line, note that if V > 0, the integral gets smaller as t increases,
and that we are conditioning on Xt = x. We put this into the right side of (5),
combine terms, drop the common dt factor, and get

∂tf(x, t) + a(x)∂xf(x, t) +
1

2
b2(x)∂2

xf(x, t) + V (x)f(x, t) = 0 . (6)

This is the backward equation for the multiplicative functional. The final con-
dition “obviously” (think about it) is V (x, T ) = 1.

The examples are all rather complicated, unfortunately. Take Xt to be
Brownian motion and V (x) = x. Then the backward equation is

∂tf +
1

2
∂2
xf + xf = 0 . (7)

You can calculate the solution explicitly as in Exercise 2. Or you can guess by
trial and error. Either way, we come to the ansatz

f(x, t) = eA(t)x+B(t) .

We plug this into the backward equation (7) using the calculations

∂tf =
(
Ȧx+ Ḃ

)
f

∂2
xf = ∂x

[
AeAx+B

]
= A2f

xf = xf .

This gives

Ȧxf + Ḃf +
1

2
A2f + xf = 0 .

This works if we set the coefficient of x to zero, and the constant term (as a
function of x) to zero. This gives the equations

Ȧ+ 1 = 0

Ḃ +
1

2
A2 = 0 .

The first equation, together with the final condition A(T ) = 0 (why?)) gives
A(t) = T − t. The second equation becomes

Ḃ = −1

2
(T − t)2 .
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The solution is B(t) = 1
6 (T − t)3. The full solution is

f(x, t) = e
1
6 (T−t)3e(T−t)x .

The history of this formula starts in the late 1940’s when physicist Richard
Feynman wrote a formula for the solution of the Schrödinger equation as a
“path integral”, which was a kind of infinite product of infinitesimal pieces
something like (4). Mathematicians reacted badly to this “Feynman integral”
because it does not correspond to an integral in the sense of measure theory.
About 15 years later, mathematician Mark Kac found that a similar formula
gave an expression for the solution of the backward equation (6). The part
of Feynman’s formula that mathematicians objected to turned into “Wiener
measure”, which is the probability distribution of Brownian motion paths. This
had the advantage of being mathematically rigorous. By the way, you pronounce
“Kac” as “cats”. His name is Polish. People who immigrated from Poland before
him spelled their names as “Katz”. For example, there is a “Katz Delicatessen”
on Houston Street not far from NYU.

2 Interest rate models

The financial services industry (as opposed to pure traders) is heavily focused
on loans and financial instruments that depend on interest rates. There is a
range of stochastic models of interest rates, but the simple models involve only
the short rate (also called overnight rate), which is the interest rate (in %/year,
say) that is paid on a loan where you “know” it will be repaid very soon (e.g.,
the next day). Let us call this rate Rt. One model is

dRt = −γ(Rt − r0) dt+ σdWt . (8)

This is a mean-reverting process centered on an average long term average rate
r0.

A floating rate loan is a loan so that the interest rate at time t is related
to an index of short rate loans at that time such as LIBOR (google this). We
could use the model (8) as a model of this fluctuating rate. Suppose you make a
loan with floating interest rate Rt to be repaid at time T . The total repayment
amount is a multiplicative function of the initial amount

MT = M0e
∫ T
0
Rs ds .

We may as well set M0 = 1 for simplicity. The value function satisfies the
backward equation is

∂tf − γ(r − r0)∂rf +
σ2

2
∂2
rf − rf = 0 .

This has an ansatz solution of the form

f(r, t) = eA(t)r+B(t) .

Try it and see. Models like this are called affine because the exponent is an
affine function of r.
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3 Change of measure

Change of measure means representing an expected value with respect to one
probability distribution with the expected value with respect to a different dis-
tribution. To get the idea, suppose p(x) and q(x) are two probability density
functions for a one component random variable X. The expected value of V (X)
with respect to the p distribution is

Ep[V (X)] =

∫
V (x) p(x) .

The likelihood ratio between p and q is

L(x) =
p(x)

q(x)
.

For now we assume that q(x) 6= 0 if p(x) 6= 0 so L(x) doesn’t have “denominator
difficulties”. The p expectation may be written as∫

V (x) p(x) =

∫
V (x)

p(x)

q(x)
q(x) dx .

This leads to the change of measure formula

Ep[V (X)] = Eq[V (X)L(X)] . (9)

Finance people sometimes talk about “worlds”. There can be a theory like
the Black Scholes theory that represents a quantity F in terms of a random
variable. For example (Week 5), the Black Scholes theory represents an option
price as an expectation. If F = Ep[V (X)], they would say: “In the p−world F
is the expected value of V (X), but in the q−world, F is the expected value of
V (X)L(X). Probability distributions are called measures, so we talk about the
p−measure and the q−measure.

As an example, suppose the p−measure says that X ∼ N (0, 1) and we
want the p−world probability that X > a. This may be evaluated using the
q−measure X ∼ N (µ, 1). The probability densities are

p(x) =
1√
2π
e−

1
2x

2

, q(x) =
1√
2π
e−

1
2 (x−µ)2 .

The ratio is

L(x) =
p(x)

q(x)

= exp

(
1

2

[
(x− µ)2 − x2

])
L(x) = e−µx+ 1

2µ
2

.
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The probability of X > a involves the indicator function V (x) = 1 if x > a and
V (x) = 0 otherwise. Then

Prp(X > a) =

∫
V (x) p(x) dx =

∫
V (x)L(x)q(x) dx

The expected value in terms of the q−measure is given by

Prp(X > a) = e
1
2µ Eq

[
e−µXV (X)

]
. (10)

The extra complexity of the left side of (10) can give a more accurate way to
calculate the probability than the direct approach suggested by the right side.
The p−world variance of V (X) can be much higher than the q−world variance

of e
1
2µeµXV (X). You can estimate the probability on the left side by taking n

independent samples Xk ∼ N (0, 1) and counting the number of “hits” (samples
with Xk > a). The variance of this is 1

np(1 − p) ≈
1
np (for p small, which is

the interesting case). The variance of the right side can be much smaller, as the
calculations of Exercise 1 show.

3.1 Almost surely

This subsection is a sequence of examples to motivate Subsection 3.3. Suppose
A is an event determined by some random variables. We say that A happens
almost surely if

Pr(A) = 1 .

For example, if X ∼ N (0, 1), then Pr(X ≥ 0) = 1. This is a silly example,
because it has nothing to do with probability and because you don’t need to
say “almost”. Any number x has x ≥ 0, surely.

The strict inequality X > 0 is another event that happens almost surely.
This one is less trivial, since X = 0 is possible in the sense that it is one of the
outcomes in the probability model. However, X = 0 “never happens” in the
sense that

Pr(X = 0, exactly ) = 0 .

Unlike the trivial example X ≥ 0, this one depends on the probability distri-
bution of X. For example, suppose you “toss a coin” and take X = 0 with
probability 1

2 and X ∼ N (0, 1) with probability 1
2 .

Z ∼ N (0, 1)

U =

{
0 with probability 1

2

1 with probability 1
2

X = UZ .

Such a random variable could come up in a financial model. We could imagine
that a market is open with probability 1

2 and if it is open, the price of an asset
could change.
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Harder examples come from probability distributions defined by limits (like
Brownian motion) or distributions that depend on infinitely many variables.
As an example of an infinitely-many-variables distribution, consider a sequence
of coin tosses U1, U2, · · · , Un, · · · . Suppose that Uk = 1 with probability p and
Uk = 0 with probability 1−p, and all the Uk are independent. You can ask: what
is the probability that Uk = 1 for all k. The answer is Pr(Uk = 1 for all k) = 0.
You can see this using a calculation using the fact that the Uk are independent

Pr(Uk = 1, k = 1, · · · , n) = pn .

Clearly, if Uk = 1 for all k, then Uk = 1 for the first n “samples”. This shows
that

Pr(Uk = 1 for all k) ≤ pn , for all n .

Zero is the only probability that is smaller than 1
n for all n.

Here’s a more subtle example that’s closer to the issue of Section 4. Suppose
you estimate p from the sequence Un. A natural estimator from the first n
samples is

p̂n =
1

n
# {Uk = 1 | 1 ≤ k ≤ n}

p̂n =
1

n

n∑
k=1

Uk . (11)

It is a theorem, see Subsection 3.2 that

p̂n → p , as n→∞ almost surely . (12)

This is an instance of the strong law of large numbers. Suppose Ap is the event
that p̂n → p as n → ∞. Let Bp be the “complementary” event that the limit
either does not exist or is not equal to p. Then almost surely means Prp(Ap) = 1.
The event Bp “never happens” in the p−world, which is Prp(Bp) = 0.

The probability space of this example is the space of infinite sequences of
zeros and ones. The p−measure is the probability distribution in which the
Uk are independent and Uk = 1 with probability p. Let q 6= p be a different
probability between 0 and 1. We can define the q−measure in which the Uk
are independent and Prq(Uk = 1) = q. The strong law of large numbers for the
q−measure says that p̂n → q as n→∞, almost surely. This means that in the
q−world, it is “almost sure” that limn→∞ p̂n 6= p. Thus

Prq(Ap) = 0 . (13)

In this example we have two measures and a set Ap so that the p−measure of
Ap is one (The measure of an event is its probability.) and the q−measure of
Ap is zero.
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3.2 Borel Cantelli

The Borel Cantelli lemma is a clever way to prove that limits happen almost
surely. Here is a slightly non-standard way to explain the idea. It uses three
ideas. First, if Sn ≥ 0 is a sequence of non-negative numbers and if the infinite
sum is finite, then the Sn have a limit

∞∑
n=1

Sn <∞ =⇒ lim
n→∞

Sn = 0 . (14)

This statement is about any sequence of numbers. It is not probabilistic. Sec-
ond, if R ≥ 0 is a random variable that is allowed to take the value R =∞, and
if the expected value is finite, then R itself is finite almost surely

E[R] <∞ =⇒ R <∞ almost surely . (15)

Third, you can exchange the order of summation and taking expected values for
non-negative numbers

∞∑
n=1

E[Sn] = E

[ ∞∑
n=1

Sn

]
. (16)

There is a little more about these claims below, but first the consequence.
You can combine all three claims and get

Sn ≥ 0 ,

∞∑
n=1

E[Sn] <∞ =⇒ lim
n→∞

Sn = 0 , almost surely . (17)

Define R to be the sum of the non-negative numbers Sk:

R =

∞∑
n=1

Sn .

The claim (16) tells you that if
∑

E[Sn] <∞, then E[R] <∞. This is the right
side of (16). Then (15) tells you that R =

∑
Sn < ∞ almost surely. Finally,

(14) tells you that Sn → 0 as n → ∞ almost surely. This (17) is a version of
the Borel Cantelli lemma.

I hope the three claims (14), (15) and (16) are plausible. The first, (14),
could be an exercise in an “ε − δ” introduction to analysis class. The second,
(15) is a version of the inequality, for any m > 0, if R ≥ 0, E[R] ≥ mPr(R ≥ m).
This is a basic fact about probability measures (which are not defined in these
notes). The third, (16) is a version of the monotone convergence theorem. The
random variables

RN =

N∑
n=1

Sn

are a monotone increasing sequence, which means that Rn+1 ≥ Rn. For any
finite n,

N∑
n=1

E[Sn] = E

[
N∑
n=1

Sn

]
= E[RN ] .
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When N → ∞, the left side converges to the left side of (16). The monotone
convergence theorem says that the right side converges to the right side of (16).

We apply the Borel Cantelli lemma (17) and a calculation to prove the claim
(12). The trick is to define

Sn = (p̂n − p)4
. (18)

The power 4 on the right doesn’t change the fact that p̂n − p → 0, but it does
help the sum on the left of (17) converge. To see that, think about an = 1√

n
.

The sum of an does not converge, but the sum of a4
n is the sum of 1

n2 , which is
finite.

an =
1√
n

=⇒
∞∑
n=1

an =∞ , but

∞∑
n=1

a4
n =

∞∑
n=1

1

n2
<∞ .

The Borel Cantelli lemma is the conceptual framework of the proof. The tech-
nical part is the calculation which shows that

E
[

(p̂n − p)4
]
≤ 1

n2
. (19)

The inequality (19) is the result of calculations that are “straightforward”
(not subtle), but a little complicated. We start with

p̂n − p =
1

n

n∑
k=1

(Uk − p) .

The Uk on the right comes from the definition (11) of p̂n. The p on the right
comes from the p on the left and 1

np = p. Note that E[(Uk − p)] = 0. We need
a power of p̂n − p. The trick for that is to express the power as a multiple sum.
For example, the square is a double sum

(p̂n − p)2
= (p̂n − p) (p̂n − p)

=

 1

n

n∑
j=1

(Uj − p)

( 1

n

n∑
k=1

(Uk − p)

)

=
1

n2

n∑
j=1

n∑
k=1

(Uj − p) (Uk − p) .

Therefore

E
[

(p̂n − p)2
]

=
1

n2

n∑
j=1

n∑
k=1

E[ (Uj − p) (Uk − p)] . (20)

If j 6= k, then Uj − p is independent of Uk − p and both have expected value
zero. This gives

E[ (Uj − p) (Uk − p)] = 0 , if j 6= k .

9



The terms with j = k have

E
[

(Uk − p)2
]

= var(Uk − p) = p(1− p) .

There are n terms with j = k, so the sum is

E
[

(p̂n − p)2
]

=
1

n2

n∑
k=1

var(Uk − p)

=
1

n2
n p(1− p)

E
[

(p̂n − p)2
]

=
p(1− p)

n
.

This calculation may be familiar from elementary probability because it is the
calculation that shows that the variance of the sample mean is proportional to
1
n . This rate of “decay to zero” is not fast enough to apply the Borel Cantelli
lemma, because the sum of 1

n is infinite.
We get a better power of n using the fourth power instead of the square.

The reasoning that led to (20) leads to

E
[

(p̂n − p)4
]

=
1

n4

n∑
i=1

n∑
j=1

n∑
k=1

n∑
l=1

E[ (Ui − p) (Uj − p) (Uk − p) (Ul − p)] .

As for the case with two U − p terms, the expected value is zero if any of the
indices i, j, k, l is not “matched” (equal to one of the others). For example, if
i 6= j and i 6= k and i 6= l, then Ui − p is independent of the other three terms
and the expected value of the product is zero. You get terms with non-zero
expectations in one of four ways. The first three ways involve distinct pairs and
the fourth involves all four being equal

i = j , k = l , i 6= k , n(n− 1) terms , E
[

(Ui − p)2
(Uk − p)2

]
= p2(1− p)2

i = k , j = l , i 6= j , n(n− 1) terms , E
[

(Ui − p)2
(Uj − p)2

]
= p2(1− p)2

i = l , j = k , i 6= j , n(n− 1) terms , E
[

(Ui − p)2
(Uj − p)2

]
= p2(1− p)2

i = j = k = l , n terms , E
[

(Ui − p)4
]

= p(1− p)(1− 2p+ 2p2) .

This leads to

E
[

(p̂n − p)4
]

=
3p2(1− p)2(n2 − n)

n4
+
p(1− p)(1− 2p+ 2p2)n

n4
.

Most of the complexity of this expression is irrelevant. What matters here is
whether the sum is finite. The first term on the right has n2 in the numerator
and n4 in the denominator. The other term on the right has n “upstairs” and
n4 “downstairs”. The sum of the first terms is, more or less, the sum of 1

n2

which does converge. This is a proof of the strong law of large numbers (12) for
this case.
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3.3 The Radon Nikodym theorem

The Radon Nikodym theorem is about when two probability measures are related
by a likelihood ratio. A likelihood function L(x) relates a p− measure to a q−
measure if the expected value of any bounded continuous function V (x) may be
computed in either probability distribution:

Ep[V (X)] = Eq[V (X)L(X)] . (21)

If this is true for “every” V , then we say the p−measure is absolutely continuous
with respect to the q−measure. If L(x) 6= 0 for all x, then this relation may be
turned around. If W (x) = L−1(x)V (x), then

Ep
[
W (X)L−1(W )

]
= Eq[W (X)] . (22)

If these are possible, then L is the Radon Nikodym derivative of the p−measure
with respect to the q−measure.

The Radon Nikodym theorem says there is such an L unless some obvious
necessary condition is violated. The necessary condition for (21) is, for any
event A,

Prq(A) = 0 =⇒ Prp(A) = 0 . (23)

This rests on the following “obvious” fact that is a part of measure theory. If
1A(x) = 1 if x ∈ A and 1A(x) = 0 if x /∈ A, and if V is any other function, then

E[V (X)1(X)] = 0 , if Pr(A) = 0 . (24)

If A is any event, and we take V (x) = 1A(x), then (21) says

Prp(A) = E[1A(X)L(X)] .

In this case Prq(A) = 0 would imply that Prp(A) = 0. The theorem (which is
hard to prove) says that if the necessary condition (23) is satisfied, then there is
a likelihood function L that makes (21) true. In that case, we say the p−measure
is absolutely continuous with respect to the q−measure. If q−measure is also
absolutely continuous with respect to the p−measure, then (22) is also true. In
that case, we say the measures are equivalent. Equivalent measures are not the
same. They can assign different probabilities to the same event and different
expected values to the same function.

The opposite of absolutely continuous is completely singular. The measures
are completely singular if there is an event A so that

Prp(A) = 1 , and Prq(A) = 0 . (25)

The event B = Ac goes the other way. We say that the q−measure puts “all its
mass” in B while the p−measure puts none of its mass there. The sets Ap of
Subsection 3.1 and (13) are an example.
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4 Girsanov theory

Girsanov theory says which diffusion processes are equivalent to each other and
which are not. When two diffusion processes are equivalent, it gives a formula
for L(X), which is Girsanov’s formula. The answer is, skipping the fine print,
that two diffusions are equivalent if they have the same infinitesimal variance
and they are completely singular with respect to each other otherwise. You
can change the infinitesimal mean (the drift) but not the infinitesimal variance
(quadratic variation) with a likelihood function change of measure.

You can see these facts explicitly for Brownian motion. We define dXt =
Xt+dt − Xt. Suppose there is a W−world where Xt is just Brownian motion,
with zero infinitesimal mean and unit infinitesimal variance:

EW
[
dXt | X[0,t]

]
= 0

EW
[

(dXt)
2 | X[0,t]

]
= dt .

In the Z−world, there is an adapted infinitesimal mean function at so that

EZ
[
dXt | X[0,t]

]
= atdt

EZ
[

(dXt)
2 | X[0,t]

]
= dt .

The likelihood function that changes measure from W to Z is given by Gir-
sanov’s formula

L(X) = e
∫ T
0
atdXte−

1
2

∫ T
0
a2tdt . (26)

If V (x) is any path functional defined on [0, T ], then

EZ
[
V (X[0,T ])

]
= EW

[
V (X[0,T ])L(X0,T ])

]
. (27)

5 Exercises

1. Calculate the q−world variance of e
1
2µeµXV (X) as a function of µ and

a, in (10). What value of µ given the smallest variance, for a > 0 and
large? What is the ratio of the p−world standard deviation to the optimal
q−world standard deviation?

2. Consider the example functional that has backward equation (7). Suppose
Xt is Brownian motion and consider the random variable

Zx,t =

∫ T

t

Xs ds , conditioned on Xt = x .

Show that Zx,t is Gaussian and identify the mean and variance. Use that
information to get f(x, t) = E

[
eZx,t

]
. This should agree with the answer

found by the ansatz “method”.
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3. If Xt is Brownian motion but V (x) = x2, then the functional is∫ T

t

X2
t dt 6= Gaussian .

Look for a solution using the ansatz method that involves eA(t)x2

.

4. Consider the Brownian motion with positive constant drift and positive
starting point

dXt = adt+ dWt , X0 = x0 , a > 0 , x0 > 0 .

Let τ be the first hitting time when Xt = 0. Be aware that Pr(τ <∞) < 1,
which means it is possible (there is a non-zero probability) that Xt > 0
for all t ≥ 0. Make a histogram of τ for a = .5 and x0 = .3. You need
to specify a final time T . Do this by trial and error, so that there are
not many hits after time T . In the code, these must not be “hard wired”,
which means, for example, that the code should use a variable a that
is assigned a = .5. Reproduce the histogram by simulating Brownian
motion directly and putting in the Girsanov change of measure weight.
For this, you have to work with a weighted histogram, where values of τ
come with weights. Part of the exercise is to figure out how to do this.
When you’re computing the Girsanov factor, you need only integrate up
to τ , not the final time T . Why?
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