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1 Introduction to the material for the week
sec:intro

In Week 9 we made a distinction between simulation and Monte Carlo. The
difference is that in Monte Carlo you are computing a number, A, that is not
random. It is likely that there is more than one formula for A. There may be
more than one way to express A as the expected value of a random variable.
Suppose

A = E[F (X)] ,

where X has probability density u(x). Suppose v(x) is another probability
density so that

L(x) =
u(x)
v(x)

(1) eq:L

is well defined. Then

A =
∫
F (x)u(x)dx =

∫
F (x)

u(x)
v(x)

v(x)dx .

This may be written as

A = Eu[F (X)] = Ev[F (X)L(X)] . (2) eq:is

This means that there are two distinct ways to evaluate A: (i) take samples
X ∼ u and evaluate F , or (ii) take samples X ∼ v and evaluate FL.

Importance sampling means using the change of measure formula (
eq:is
2) for

Monte Carlo. The expected value Eu[F (X)] means integrate with respect to
the probability measure u(x)dx. Using the measure v(x)dx instead represents
a change of measure. The answer A does not change as long as you put the
likelihood ratio into the second integral, as in the identity (

eq:is
2).

There are many uses of importance sampling in Monte Carlo and applied
probability. One use is variance reduction. The variance of the u−estimator is

varu(F (X)) = Eu
[
F (X)2

]
−A2 .
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The variance of the v−estimator is

varv(F (X)L(X)) = Ev
[

(F (X)L(X))2
]
−A2 .

It may be possible to find a change of measure and corresponding likelihood
ratio so that the variance of the v−estimator is smaller. That would mean
that the variation of F (x)L(x) is smaller than the variation of F (x), at least
in regions that “count”. A good probability density v is one that puts more of
the probability in regions that are important for the integral, hence the term
importance sampling.

Rare event simulation offers especially dramatic variance reductions. This is
when A = Pu(X ∈ B) (which is the same as Pu(B)) The event B is rare when
the probability is small. Applications call for evaluating probabilities ranging
from 1% to 10−6 or smaller. A good change of measure is one that puts its
weight on the most likely parts of B. Consider the one dimensional example
where u = N (0, 1) and B = {x > b}. If b is large, P0,1(X > b) is very small.
But most of the samples with X > b are only a little larger than b. The measure
v = N (b, 1) is a simple way to put most of the weight near b. The likelihood
ratio is

L(x) =
u(x)
v(x)

=
e−x

2/2

e−(x−b)2/2
= eb

2/2e−bx .

When x = b, the likelihood ratio is L(b) = e−b
2/2, which is very small when b is

large. This is the largest value of L(x) when x ≥ b.
The probability measures u(x)dx and v(x)dx give two ways to estimate

P0,1(X > b). The u−method is to draw L independent samples Xk ∼ N (0, 1)
and count the number of those with Xk > b. Most of the samples are wasted in
the sense that they are not counted. The v−method is to draw L independent
samples Xk ∼ N (b, 1). The estimator is

P0,1(X > b) =
∫ ∞
b

L(x)v(x)dx ≈ 1
L

∑
Xk>b

L(Xk) .

Now about half of the samples are counted. But they are counted with a small
weight L(Xk) < e−b

2/2. A hit is a sample Xk > b. A lot of small weight hits
give a lower variance estimator than a few large weight hits.

The Girsanov theorem describes change of measure for diffusion processes.
Probability distributions, or probability measures, on path space do not have
probability densities. In some cases the likelihood ratio L(x) can be well defined
even when the probability densities u(x) and v(x) are not. If x is a path, the
likelihood ratio L(x) is a path function that makes (

eq:is
2) true for “well behaved”

functions F . Roughly speaking, a change of measure can change the drift of a
diffusion process but not the noise. The Girsanov formula is the formula for the
L that does the change.

Girsanov’s theorem has two parts. One part says when two diffusion pro-
cesses may be related by a change of measure. If they can be, the two probability
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measures are absolutely continuous with respect to each other, or equivalent. If
two probability measures are not equivalent in this sense, then at least one of
them has a component that is singular with respect to the other. The other
part of Girsanov’s theorem is a formula for L(x) in cases in which it exists.
This makes the theorem useful in practice. We may compute hitting probabili-
ties or expected payouts using any diffusion that is equivalent to the one we are
interested.

2 Probability measures

A probability measure is function that gives the probability of any event in an
appropriate class of events. If B is such an event, then P(B) is this probability.
By “class of appropriate events”, we mean a σ−algebra. A probability function
must be countably additive, which means that if Bn is a sequence of events with
Bn ⊆ Bn+1 (an expanding family of events), then

lim
n→∞

P(Bn) = P

( ∞⋃
n=1

Bn

)
. (3) eq:ca

This formula says that the probability of a set is in some sense a continuous
function of the set. The infinite union on the right really is the limit of the sets
Bn. Another way to write this is to suppose Ck is any sequence “appropriate
events”, and define

Bn =
n⋃
k=1

Ck .

Then the Bn are an expanding family. The countable additivity formula is

lim
n→∞

P

(
n⋃
k=1

Ck

)
= P

( ∞⋃
k=1

Ck

)
.

Every proof of every theorem in probability theory makes use of countable ad-
ditivity of probability measures. We do not mention this property very often in
this course, which is a signal that we are not giving full proofs.

2.1 Integration with respect to a probability measure

A probability density defines a probability measure. If the probability space is
Ω = Rn and u(x) is a probability density for an n component random variable
(x1, . . . , xn), then

Pu(B) =
∫
B

u(x)dx .

is the corresponding probability measure. If B is a small neighborhood of a
specific outcome x, then we write its probability as Pu(B) = dP = u(x)dx.
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More generally, if F (x) is a function of the random variable x, then

Eu[F (X)] =
∫
F (x)dP (x) . (4) eq:pi

This is the same as
∫
F (x)u(x)dx when there is a probability density.

But the expression (
eq:pi
4) makes sense even when P is a more general probability

measure. A simple definition involves a ∆F = 2−m rather than a ∆x. Define
the events B(∆F )

k as

B
(∆F )
k = {x | k∆F ≤ F (x) < (k + 1)∆F} . (5) eq:Bk

To picture these sets, suppose x is a one dimensional random variable and con-
sider the graph of a function F (x). Divide the vertical axis into equal intervals
of size ∆F and a horizontal line for each breakpoint k∆F . The set B(∆F )

k is the
part of the x−axis where the graph of F lies in the horizontal stripe between
k∆F and (k + 1)∆F . This set could consist of several intervals (for example,
two intervals if F is quadratic) or something more complicated if F is a com-
plicated function. If Ω is an abstract probability space, then the sets B(∆F )

k are
abstract events in that space. By definition, the function F is meeasurable with
respect to the σ−algebra F if each of the sets B(∆F )

k ∈ F for each k and ∆F .
The probability integral (

eq:pi
4) is defined as a limit of approximations, just as

the Riemann integral and Ito integral are. The approximation in this case is
motivated that if x ∈ B(∆F )

k , then |F (x)− k∆F | ≤ ∆F . Therefore, if the dP
integral were to make sense, we would have∣∣∣∣∣

∫
B

(∆F )
k

F (x)dP (x) − k∆F
∫
B

(∆F )
k

dP (x)

∣∣∣∣∣
=

∣∣∣∣∣
∫
B

(∆F )
k

F (x)dP (x)− k∆F P
(
B

(∆F )
k

)∣∣∣∣∣
≤ ∆F P

(
B

(∆F )
k

)
.

The approximation to the integral is defined by using the above approximation
on each horizontal slice.∫

F (x)dP (x) =
∑
k

∫
B

(∆F )
k

F (x)dP (x) ≈
∑
k

k∆FP
(
B

(∆F )
k

)
This was motivation. The formal definition of the approximations is

Im =
∑
k

k∆FP
(
B

(∆F )
k

)
, with ∆F = 2−m . (6) eq:Li

The probability integral is defined as∫
Ω

F (x)dP (x) = lim
m→∞

Im . (7) eq:pil
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The numbers on the right are a Cauchy sequence because if n > m then

|Im − In| ≤ ∆F
∑
k

P
(
B

(∆F )
k

)
= 2−m

∑
k

P
(
B

(∆F )
k

)
= 2−m .

The expected value is the same thing as the probability integral:

EP [F (X)] =
∫
F (x)dP (x) .

A different view of our definition of the probability integral will be useful
in the next subsection. The indicator function of an event B is 1B(x) = 1 if
x ∈ B and 1B(x) = 0 if x /∈ B. A simple function is a finite linear combination
of indicator functions. We say F (x) is a simple function if there are events
B1, . . . , Bn and weights F1, . . . , Fn so that

F (x) =
n∑
k=1

Fk1Bk
(x) .

We could define the probability integral of a simple function as∫
F (x)dP (x) =

n∑
k=1

FkP (Bk) . (8) eq:sfi

This has to be the definition of the integral of a simple function if the integral
is linear and if ∫

Ω

1B(x)dP (x) =
∫
B

dP (x) = P (B) .

Once you know what the integral should be for simple functions, you know what
it should be for any function that can be approximated by simple functions. If
F is a bounded function, then

F (∆F )(x) =
∑

k∆F<Fmax

k∆F1
B

(∆F )
k

(x)

satisfies
∣∣F (∆F )(x)− F (x)

∣∣ ≤ ∆F for all x. Therefore, if the concept of integra-
tion makes sense at all, the following should be true:∫

Ω

F (x)dP (x) = lim
∆F→0

∫
Ω

F (∆F )(x)dP (x)

=
∑

k∆F<Fmax

k∆F
∫

Ω

1
B

(∆F )
k

dP (x)∫
Ω

F (x)dP (x) = lim
∆F→0

∑
k∆F<Fmax

k∆F P (B(∆F )
k ) (9) eq:sfd
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The point of this is that if the integral of indicator functions is defined, then all
other integrals are automatically defined.

A fully rigorous treatment would stop here to discuss a large number of
technical details here. The sum that defines the approximation (

eq:Li
6) converges

if F is bounded. If F is not bounded, we can “approximate” F by a bounded
function and try to take the limit. The most important integration theorem
is the dominated convergence theorem, which gives a condition under which
pointwise convergence

Fn(x)→ F (x) as n→∞ almost surely

implies convergence of the probability integrals∫
Fn(x)dP (x)→

∫
F (x)dP (x) . (10) eq:lth

The condition concerns the maximal function

MF (x) = sup
n
|Fn(x)| .

If ∫
MF (x)dP (x) <∞ , (11) eq:mb

then (
eq:lth
10) is true. We do not give the proof in this course. A simple way to show

that (
eq:mb
11) is satisfied is to come up with a function G(x) so that |Fn(x)| ≤ G(x)

for all x and all n, and
∫
G(x)dP (x) <∞. A function G like this is a dominating

function.

2.2 Absolutely continuity of measures

If P is a probability measure then a function L(x) can define a new measure
through the informal relation

dQ(x) = L(x)dP (x) . (12) eq:dQ

This means that for any measurable set B,

Q(B) =
∫
B

L(x)dP (x) . (13) eq:Q

In order for Q to be a probability measure, L must have two properties. First,
L(x) ≥ 0 almost surely (with respect to P ). Second,∫

Ω

L(x)dP (x) = 1 . (14) eq:L1

If the probability measure P is defined and if L has these two properties, then
(
eq:Q
13) defines another probability measure Q.
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The informal relation (
eq:dQ
12) leads to a relationship between expectation values

in the P and Q measures:

EQ[F (X)] = EP [L(X)F (X)] . (15) eq:EQ

This becomes clearer when you use (
eq:dQ
12) to derive the equivalent probability

integral equation ∫
Ω

F (x)dQ(x) =
∫

Ω

F (x)L(x)dP (x) . (16) eq:piL

You can prove this formula as suggested at the end of the previous subsection.
You check that it is true for simple functions. Then it is true for any other
function, because any function can be well approximated by simple functions.
Moreover, it is true for simple functions if it is true for indicator functions. But
if F is an indicator function F (x) = 1B(x), then (

eq:piL
16) is exactly the same as

(
eq:Q
13).

For probability measures defined by densities, the definition (
eq:dQ
12) is the same

as the original definition (
eq:L
1). If dP (x) = u(x)dx and dQ = v(x)dx, then dQ(x) =

v(x)
u(x)dP (x).

You can ask the reverse question: given probability measures dP and dQ,
is there a function L(x) so that dQ(x) = L(x)dP (x)? There is an obvious
necessary condition, which is that any event that is impossible under P is also
impossible under Q. If B is an event with P (B) = 0, then the definition (

eq:Q
13)

gives Q(B) = 0. You can see this by writing∫
B

L(x)dP (x) =
∫

Ω

1B(x)L(x)dP (x) .

If F (x) = 1(x)L(x) and B
(∆F )
k for this function, then B

(∆F )
k ⊆ B, which

implies that P (B(∆F )
k ) ≤ P (B) = 0. Therefore, all the approximations to∫

1B(x)L(x)dP (x) are zero. The Radon Nikodym theorem states that this nec-
essary condition is sufficient. If P and Q are any two probability measures with
the same σ−algebra F , and if P (B) = 0 implies that Q(B), then there is a
function L(x) that gives Q from P via (

eq:Q
13). This function is called the Radon

Nikodym derivative of Q with respect to P , and is written

L(x) =
dQ(x)
dP (x)

.

If the condition P (B) = 0 =⇒ Q(B) = 0 is satisfied, we say that Q is absolutely
continuous with respect to P . This term (absolutely continuous) is equivalent
in a special case to something that really could be called absolute continuity.
But now the term is applied in this more general context. If P is absolutely
continuous with respect to Q and Q is absolutely continuous with respect to P ,
then the two measures are equivalent to each other.

If Q is not absolutely continuous with respect to P , then there is an event B
that has positive probability in the Q sense but probability zero in the P sense.
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When this happens, it is usual that all of Q has zero probability in the P sense.
We say that Q is completely singular with respect to P if there is an event B
with Q(B) = 1 and P (B) = 0. If Q is completely singular with respect to P ,
then P is completely singular with respect to Q, because the event C = Bc

has P (C) = 1 but Q(C) = 0. We write P ⊥ Q when P and Q are completely
singular with respect to each other.

Here is a statistical interpretation of absolute continuity and singularity.
Suppose X is a sample from P or Q, and you want to guess whether X ∼ P or
X ∼ Q. Of course you could guess. But if your answer is a function of X alone
(and not another coin toss), then there is some set B ⊂ Ω so that if X ∈ B
you say Q, and otherwise you say P . A type I error would be saying Q when
the answer is P , and a type II error is saying P when the answer is Q.1 The
confidence of your procedure is 1− P (B), which is the probability of accepting
the null hypothesis P if P is true. The power of your test is Q(B), which is the
probability of rejecting the null hypothesis when the null hypothesis is false. If
P ⊥ Q, then there is a test with 100% confidence and 100% power. You say
X ∼ Q if X ∈ B and you say X ∼ P otherwise. Conversely, if there is test with
100% confidence and 100% power, then P ⊥ Q.

A statistical test, or, equivalently, a set B, is efficient if there is no way to
increase the confidence in the test without decreasing its power. Equivalently,
B is efficient if you cannot increase its power without decreasing its confidence.
The Neyman Pearson lemma says that if B is efficient, then there is an L0 so
that B = {x | L(x) > L0}. Since L = dQ

dP , the Q probability is larger than the
P probability when L is large.

2.3 Examples

Suppose X ∈ Rn is an n component random variable. Suppose P makes X a
multivariate normal with mean zero and covariance matrix C. If H = C−1,
then the probability density for P is

u(x) = ce−x
tHx/2 .

(The normalization constant c is not the covariance matrix C.) We want L(x) =
cey

tx to be a likelihood ratio. What should c be and what is the mean and
covariance of the resulting distribution? We find the answer by computing
e−(x−µ)tH(x−µ)/2 = e−x

tHx/2eµ
tHxe−µ

tHµ/2. If µtH = yt, then Hµ = y because
H is symmetric, so µ = Cy and e−µ

tHµ/2 = e−y
tCy/2. Therefore

L(x) = ey
txe−y

tCy/2 (17) eq:LG

is a likelihood ratio, and the Q distribution has the same covariance matrix but
mean µ = Cy.

1In statistics, P would be the null hypothesis and Q the alternate. Rejecting the null
hypothesis when it is true is a type I error. Accepting the null hypothesis when it is false is
a type II error. Conservative statisticians regard type I errors as worse than type II.
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Suppose X is a one dimensional random variable, the P distribution is uni-
form [0, 1] and the Q distribution is N (0, 1). Then P is absolutely continuous
with respect to Q but Q is not absolutely continuous with respect to P .

Any two Gaussian distributions in the same dimension are equivalent.
Suppose X ∈ Rn, and P = N (0, I). Suppose Q is the probability distribu-

tion formed by taking X = Y
|Y | , were Y ∼ N (0, I). Let |Y | = (Y 2

1 + · · ·+Y 2
n )1/2

is the Euclidean length. Then X is a unit vector that is uniformly distributed
on the unit sphere in n dimensions. That sphere is called Sn−1, because it is an
n− 1 dimensional surface. For example, S2 is the two dimensional unit sphere
in three dimensions. The set B = Sn−1 has Q(B) = 1 and P (B) = 0.

3 Changing the drift, Girsanov’s theorem

The simplest version of Girsanov’s formula is a formula for the L(x) that changes
standard Brownian motion to one with drift at. This L relates P , which is the
distribution for standard Brownian motion on [0, T ] to Brownian motion with
drift. That is

P : dXt = dWt (18) eq:SDEP

Q : dXt = atdt+ dWt . (19) eq:SDEQ

The formula is dQ(x) = L(x)dP (x), where

L(x) = e
R T
0 atdXte−

R T
0 a2

tdt/2 . (20) eq:G1

The integrals that enter into L are well defined. In fact, we showed that they
are defined almost surely. If P and Q are absolutely continuous with respect to
each other (are equivalent), then almost surely with respect to P is the same
as almost surely with respect to Q. On the other hand, likely with respect to
P does not mean likely with respect to Q, as our importance sampling example
shows.

There are several ways to derive Girsanov’s formula (
eq:G1
20). Here is one way

that is less slick but more straightforward. Choose a ∆t = T2−m and let the
observations of X at the times tk = k∆t be assembled into a vector ~X =
(X1, X2, . . . , X2m). We are writing Xk for Xtk as we have sometimes done
before. We write an exact formula for the joint PDF of ~X under P , and an
approximate formula for the joint density under Q. The ratio of these has a
well defined limit, which turns out to be (

eq:G1
20), as ∆t→ 0.

Let u(~x) be the density of ~X under P . We find a formula for u by thinking
of a single time step that goes from xk to xk+1. The conditional density of Xk+1

given Xk is normal mean zero variance ∆t. This makes (in a hopefully clear
notation)

uk+1(x1, . . . , xk+1) = uk(x1, . . . , xk)
e−(xk+1−xk)2/(2∆t)

√
2π∆t

.
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Therefore

u(~x) = u(x1, . . . , xn) = c exp

(
−
n−1∑
k=0

(xk+1 − xk)2

2∆t

)
. (21) eq:uP

The distribution of ~X under Q can be written (approximately) in a similar way.
We call it v(~x). In the Q process, conditional on Xk, Xk+1 is approximately
normal with variance ∆t and mean Xk + atk∆t. Therefore,

vk+1(x1, . . . , xk+1) ≈ vk(x1, . . . , xk)
e−(xk+1−xk−atk

∆t)2/(2∆t)

√
2π∆t

.

This leads to

v(~x) = v(x1, . . . , xn) = c exp

(
−
n−1∑
k=0

(xk+1 − xk − atk∆t)2

2∆t

)

= c exp

(
−
n−1∑
k=0

(xk+1 − xk)2

2∆t

)
exp

(
n−1∑
k=0

(xk+1 − xk) atk

)
exp

(
−∆t

2

n−1∑
k=0

a2
tk

)
(22) eq:vQ

Now take the quotient L = v/u. The first exponential on the right of (
eq:vQ
22)

cancels. The second in an approximation of an Ito integral

n−1∑
k=0

(xk+1 − xk) atk →
∫ T

0

atdXt as ∆t→ 0 .

The third is an approximation to an ordinary integral:

∆t
n−1∑
k=0

a2
tk
→
∫ t

0

a2
tdt .

Therefore

lim
∆t→0

v(~x)
u(~x)

= exp

(∫ T

0

atdXt

)
exp

(
−1
2

∫ T

0

a2
tdt

)
.

This is the formula (
eq:G1
20).

Note the similarity of the Gaussian path space change of measure formula
(
eq:G1
20) to the simple Gaussian change of measure formula (

eq:LG
17). In both cases the

first exponential has an exponent that is linear x. The second exponential has
a quadratic exponent that normalizes L. In (

eq:LG
17), the first exponent makes Q

larger in the direction of y, which is the direction in which ytx grows the fastest.
In (

eq:G1
20), the pulling term

∫
atdXt is large when Xt moves in the direction of at.

For example, if at > 0, then (
eq:SDEQ
19) has a drift to the right, which is direction in

which L, given by (
eq:G1
20) is large.
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The more general Girsanov theorem concerns two stochastic processes

P : dXt = b1(Xt)dWt (23) eq:bdW

Q : dXt = a(Xt)dt+ b2(Xt)dWt . (24) eq:abdW

One part of Girsanov’s theorem is that P and Q are singular with respect to
each other unless b1 = b2. The proof of this is the quadratic variation formula
from an earlier week. If dXt = a(Xt)dt+ b(Xt)dWt, then

[X]t =
∫ t

0

b(Xs)2ds . (25) eq:qv

The quadratic variation is

[X]t = lim
∆t→0

∑
tk<t

(Xk+1 −Xk)2
. (26) eq:qvd

We showed that the limit exists for a given path Xt almost surely. If you have
a path, you can evaluate the quadratic variation by taking the limit (

eq:qvd
26). If

this is gives b1, then Xt came from the P process (
eq:bdW
23). If it gives b2, then Xt

came from the Q process (
eq:abdW
24). Since these are the only choices, you can tell

with 100% confidence whether a given path is from P or Q.
This fact has important implications for finance, particularly medium fre-

quency trading. If you have, say, daily return data or ten minute return data,
you have a pretty good idea what the volatility is. The higher frequency the
measurements, the better your estimate of instantaneous volatility. But tak-
ing more frequent measurements does not estimate the drift – expected return
– more accurately. With high frequency data, the variance of asset prices, or
the covariances of pairs of prices, is more accurately known than the expected
returns.

The final part of Girsanov’s theorem is a formula for the likelihood ratio
between the measures

P : dXt = b(Xt)dWt (27) eq:bdW1

Q : dXt = a(Xt)dt+ b(Xt)dWt . (28) eq:abdW1

This formula can be derived from approximate formulas for the probability
density in a way similar to how we got (

eq:G1
20). But people prefer the following

argument. The change of measure

L(w) = e
R T
0 µtdWte−

R T
0 µ2

tdt/2

Turns the process dWt into the process dW ′t = µtdt+ dWt. Therefore, if we use
this weight function, on the process (

eq:bdW1
27) we get

dX = b(Xt) (µtdt+ dWt) .

This becomes the process (
eq:abdW1
28) if

µt =
at
bt
.
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Therefore, the likelihood ratio between (
eq:bdW1
27) and (

eq:abdW1
28) is

L = e
R T
0

at
bt
dWte

−
R T
0

a2
t

b2
t
dt/2

.
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