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Always check the class message board on the blackboard site from home.nyu.edu before doing any

work on the assignment.

Assignment 6, due November 12

Corrections: (none yet.)

1. Suppose Xt = (X1,t, X2,t, . . . , Xn,t), where the Xk,t are independent stan-
dard Brownian motions. The distance of Xt from the origin is

Rt =
(
X2

1,t + · · ·+X2
n,t

)1/2
.

We calculate dynamics of the Bessel process Rt. This may be found in
Wikipedia, but please try to do the problem independently.

(a) Suppose f(x1, . . . , xn) is some smooth function, and the Xk,t are
independent standard Brownian motions. Derive Ito’s lemma

dft =
n∑

k=1

∂xj
f dXj +

1
2

n∑
j=1

∂2
xj
f dt .

This is written in vector notation as

dft = ∇f · dXt + 1
2 4 f dt .

The Laplace operator, or Laplacian, acting on f is

4f =
n∑

j=1

∂2
xj
f .

In particular, E[ dft | Ft] = 1
2 4 f(Xt) dt.

(b) For f(x) = |x| =
(
x2

1 + · · ·+ x2
n

)1/2, calculate ∇f and 4f . Hint:
∇f points directly away from the origin (why?). For ∂2

xj
f , you have

to use the chain rule, twice.

(c) For f(x) = |x|, calculate E[ dRt | Ft] = a(Rt)dt and E
[
dR2

t | Ft

]
=

µ(Rt)dt.

2. (Forward equation) Suppose Xt is a diffusion process and u(x, t) is the
probability density of Xt (as a function of x). Then u satisfies a forward
equation, which is a PDE. Early in the course we saw that ifXt is Brownian
motion, then u satisfies the heat equation

∂tu =
1
2
∂2

xu .
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This exercise suggests how to find the forward equation for more general
diffusions. The full derivation by this method is time consuming, so we
will do a special case, the case of additive noise. Additive noise means that
the coefficient µ(x) in the infinitesimal variance (equation (2) of Week 7)
is independent of x.

The first step is to approximate the process Xt by a discrete time process
X∆t

j . We want X∆t
j ≈ Xtj

, where tj = j∆t as always. The approximation
will take the form

X∆t
j+1 = X∆t

j + a(X∆t
j )∆t+ bZj , (1)

where the Zj are i.i.d. Zj ∼ N (0, 1), and the coefficient b is yet to be
determined. We want the approximation to have the properties that

E
[

∆X∆t
j | Fj

]
= a(X∆t

j )∆t , (2)

and
var
(
∆X∆t

j | Fj

)
= µ∆t . (3)

Here, µ is the constant value of µ(x) above. The formula (1) satisfies the
drift condition (2) automatically. Computing from (1) gives var

(
∆X∆t

j | Fj

)
=

b2. This gives (3) if b =
√
µ∆t. Therefore, our approximation is

X∆t
j+1 = X∆t

j + a(X∆t
j )∆t+

√
µ∆tZj . (4)

This approximation satisfies the continuity condition

E
[ (

∆X∆t
j

)4 | Fj

]
≤ C∆t2 .

It is possible to prove that approximations with these properties converge
to the exact stochastic process Xt in the sense of distributions.

Let uj(x) be the probability density of X∆t
j . This should be an approxi-

mation of the probability density of Xtj
, which is

uj(x) ≈ u(x, tj) .

The forward equation PDE that u(x, t) satisfies has the form

∂tu = L∗u , (5)

where L∗ is a differential operator in the x variable. We will find L∗ by
finding a formula

uj+1(x) = uj(x) + ∆tL∗uj(x) +O(∆t3/2) . (6)

The technique will be to derive an integral formula for uj+1 in terms of
uj , and then to derive (6) from the integral formula by approximating the
integral.
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(a) Let vj(x, y) be the joint probability density of (X∆t
j , X∆t

j+1). Here x
is the X∆t

j variable and y is the X∆t
j+1 variable. For example,

P
(
X∆t

j > X∆t
j+1

)
=
∫ ∞
−∞

∫ x

y=−∞
vj(x, y) dydx .

Write a formula for vj(x, y) in terms of uj(x). This is done using (4)
and the formula for a Gaussian density. Use this to find a formula of
the form

uj+1(y) =
∫ ∞
−∞

K(x, y,∆t)uj(x) dx , (7)

I with a simple Gaussian explicit formula for K.
(b) A “warm up problem” is a problem you know the answer to already

that you can use to figure out this new mathematical machinery. In
the present case, you know that if Xt is Brownian motion, the PDE
(5) should be the heat equation. This part of the exercise shows that
(6) is satisfied with L∗u = 1

2∂
2
xu. In the integral (7), make a Taylor

expansion of uj(x) for x near y. This may be done in two steps,
first to a change of variables x ← z = x − y, then make the Taylor
expansion

uj(y + z) = uj(y) +O (|z|) or

uj(y + z) = uj(y) + ∂xuj(y)z +O
(
z2
)

or

uj(y + z) = uj(y) + ∂xuj(y)z + 1
2∂

2
xuj(y)z2 +O

(
|z|3
)

or

uj(y + z) = uj(y) + ∂xuj(y)z + 1
2∂

2
xuj(y)z2 + 1

6∂
3
xuj(y)z3 +O

(
z4
)

You know you have gone far enough when the remainder term con-
tributes something smaller thanO(∆t). That is,

∫
K(y+z, y,∆t) |z|p dz =

O(∆t3/2).
(c) Do the problem now under the hypothesis that a(x) is indepen-

dent of x. Let x∗(y) be the x value that maximizes the integrand
K over x, then let x = x∗(y) + z. This should give uj+1(y) =
uj(x∗(y))+ 1

2∂
2
xuj(x∗)). But x∗(y) = y+O(∆t), so you can write ex-

press uj(x∗(y)) as a Taylor expansion about uj(y) and ignore terms
beyond O(∆t).

(d) The last step is the hardest. In K you find the expression somewhere
(y − x− a(x)∆t)2. We want to integrate over x. We do not need
to do the integral exactly, so we can make approximations in this
expression if they do not change the answer up to O(∆t). Make a
Taylor series approximation to a about y (y is a parameter in the
integration) a(x) = a(y) + a′(y)(x− y) + · · · (you figure out how far
you need to go). You should get something involving

uj(x∗)
1± a′(y)∆t

+ · · ·
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This is
uj(x∗) (1∓ a′(y)∆t) ,

which gives all the contributions of order ∆t. The answer is supposed
to be L∗uj(x) = −∂x (a(x)uj(x)) + 1

2∂
2
xuj(x).
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