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Always check the class message board on the blackboard site from home.nyu.edu before doing any

work on the assignment.

Assignment 5, due October 29

Corrections: (none yet.)

1. (A generalization of the Ito isometry formula) Here is a handy to calculate
some things about Ito integrals

(a) Suppose ft and gt are non-anticipating functions, and the correspond-
ing Ito integrals are

Xt =
∫ t

0

fsdWs

Yt =
∫ t

0

gsdWs .

Show that

cov(Xt, Yt) = E[XtYt] =
∫ t

0

E[ fsgs] ds .

(b) Suppose ft = t2 and gt = 1. The notes for Week 5 show that Xt ∼
N (0, t5/5). Clearly Yt = Wt. Compute the covariance of Xt and
Wt using the result of part (a). This should agree with the result of
question (3) from Assignment 3.

(c) Since (Xt,Wt) is a bivariate normal whose variance/covariance struc-
ture you know, you can compute the conditional variance var(Xt|Wt).
Use this result to show that Xt is not a function of Wt. This is an
example of a general phenomenon, that the value of an Ito integral
depends on the whole path W[0,t], not just the endpoint Wt.

2. (Ornstein Uhlenbeck) This exercise goes through another approach to the
Ornstein Uhlenbeck process. This time the process is called Vt because it
represents the velocity of a small particle in a fluid at time t. This particle
is subject to a random force Ft and friction with coefficient γ. We assume
the units have been chosen so the mass of the particle is 1. The dynamics
are

dVt
dt

= −γVt + Ft . (1)

The term −γVt represents friction proportional to the velocity of the par-
ticle, but pushing in the direction the particle is not moving. We always
assume γ > 0.
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(a) Write the solution that corresponds to F ≡ 0 and Vs = 1. Call this
G(s, t). This plays the role that is played by a Green’s function for
a PDE.

(b) Suppose Ft is a bounded function of t or grown slowly with t as
t→ −∞. Suppose that Vt likewise grows slowly with t or is bounded.
Show that

Vt =
∫ t

−∞
G(s, t)Fs ds . (2)

Hint: Differentiate with respect to t. There are two terms, which
correspond to the two terms on the right of (1).

(c) An impulsive force of size 1 has the form Ft = δ(t− t0). Describe the
solution (2) with an impulsive force, both for t < t0 and t > t0.

(d) Show that the formula (2) corresponds to a superposition of impulsive
forces at time s over the interval ds with size Fsds.

(e) Suppose we replace the impulsive force over the interval (s, s + ds)
with a mean zero Gaussian σdWs in (2). Find a formula for E[Vt] and
one for var(Vt). Hint: These are independent of t, why? If you are
uncomfortable with an infinite range of integration, you may replace
−∞ by a large negative t0 in (2), then let t0 → −∞.

(f) Show that the Vt given by part (2e) is a Markov process. Hint: write
a formula for E[Vs | Ft] that depends only on Vt and W[t,s].

(g) Suppose ∆V = Vt+∆t − Vt. Find a formula for E[ ∆V | Ft], and
one for E

[
(∆V )2 | Ft

]
. Show that this is the same as the Ornstein

Uhlenbeck process in that the formulas here agree with the formulas
from Week 3, Section 5 (possibly with 2γ for γ or 2σ for σ. Hint: for
the latter, it may be simpler to calculate var (∆V | Ft), because the
dependence on Vt is different.

3. In Einstein’s model of Brownian motion, the location of a particle is

Xt =
∫ t

0

Vs ds . (3)

This exercise shows that this is true, provided we use an appropriate
scaling. The parameter γ from Exercise (2) controls how fast Vt loses
memory. Therefore, in this exercise we take the limit γ →∞ and identify
the limiting process Xt.

(a) Find a formula for Xt in the form

Xt =
∫ t

0

L(s, t)dWs .

Hint: Combine the two formulas (2) (with Fsds = dWs) and (3),
reverse the order of integration.
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(b) Find a formula for σ as γ →∞ so that E
[
X2

1

]
= 1. Call this process

Xγ,t Hint: the exact formula for finite γ may be hard to find, but
you can find the behavior of σ as γ →∞ as a power of γ to leading
order. This all you need.

(c) Show that in the limit γ → ∞ from part (3b) the process Xγ,t has

Xγ,[0,T ]
D→ Xt as γ → ∞, where Xt is standard Brownian motion.

Take this to mean that the finite dimensional joint distributions of
(Xt1 , . . . , Xtn) are what they should be for Brownian motion. Hint:
Since Xγ,[0,T ] is Gaussian (being a linear function of W[0,T ]), you
just need to evaluate the limiting means and covariances. You can
do these from part (3b) and the independent increments property.
So you need to show that as γ → ∞, you approach independent
increments.

(d) (only for those who have taken Probability Limit Theorems II or oth-
erwise have the background to understand the question) Complete
part (3c) by showing that the Xγ,[0,T ] form a tight family. You can
do this by finding uniform estimates of the form

E
[

∆X4
γ

]
≤ C∆t2 ,

which imply that the paths Xγ are uniformly Hölder continuous.

4. (strong law of large numbers) Suppose Yk is a family of i.i.d. random
variables with E[Yk] = µ. The Kolmogorov strong law of large numbers is
the theorem that if E[ |Yk|] <∞, then

Y n =
1
n

n∑
k=1

Yk → µ as n→∞ a.s. (4)

This exercise does not suggest his brilliant proof using the three series
lemma or the more recent proof using the Birkoff ergodic theorem. Instead:
Give a proof of (4) using the hypothesis E

[
Y 4
k

]
< ∞. Hint: Suppose

µ = 0. The statement Y n → 0 is the same as the statement Y
4

n → 0. Set
Xn = Y

4

n and try to show that
∑

E[Xn] <∞ and use the Borel Cantelli
style lemma from the notes. What do you do if µ 6= 0?

5. (Poisson process) A simple Poisson arrival process is a sequence of times
0 = T0 < T1 < T2 < · · · . The inter-arrival times Sk = Tk − Tk−1 are
independent exponential random variables. The intensity parameter, λ, is
the parameter in the exponential distribution Sk ∼ λe−λs, Sk > 0. The
counting function1 is Nt = k if Tk < t and Tk+1 ≥ t. Either the counting

1The inequality/equality choice makes the process Nt a cadlag process, more properly
càdlàg, a French abbreviation of “continue à droite, limite à gauche”, which translates to
“continuous on the right, limit on the left”. If you don’t know French, you can remember
droite, which is related to the English word ”right” (both as in ”rights” and as a direction),
and gauche is an English word related to being clumsy (or inappropriate), which is how it is
for many of us with our left hand.
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process or the arrival times are called the Poisson process. The counting
process jumps from k to k+1 at time Tk. Therefore, it is sometimes called
a jump process.

(a) Derive the probability density, fk(t), of Tk. Hint:

P(Tk ∈ (t, t+ dt)) =
∫ t

t′=0

fk−1(t′) P(Tk ∈ (t, t+ dt) | Tk−1 = t′) dt′ .

Write this in terms of the Sk density, Figure out the integrals, starting
with f1(t) = λe−λt, then moving to f2(t), f3, etc., until you see the
pattern.

(b) Derive a formula for pn(t) = P(Nt = n). This is the Poisson dis-
tribution. Check that your formula satisfies

∑∞
0 pn(t) = 1. This

involves the Taylor series formula for the exponential. Hint: p0(t) =
P(T1 > t), p1(t) = P(T1 < t < T2), etc. Look for the pattern. Prove
it by induction.

(c) Introduce a small time increment ∆t and a probability p∆t = λ∆t
(p∆t < 1 for ∆t small enough). Define tj = j∆t and independent
random variables Yj = 1 with probability p∆t and Yj = 0 otherwise.
Define

N∆t
t =

∑
tj<t

Yj .

Show that for each t,

N∆t
t
D→ Nt as ∆t→ 0 .

Hint: The distribution of N∆t
t is binomial. The limit ∆t→ 0 is easy

for p∆t
n (t).

(d) Assuming that N∆t
[0,T ]

D→ N[0,T ] as ∆t → 0, show that the Poisson
process has the independent increments property. Hint: this is a
statement about discrete probabilities that you can check by using
those probabilities, and figuring out what happens if t is not one of
the tj .

(e) Show that Nt is a Markov process.

(f) The compensated Poisson arrival process is Mt = Nt − t. Show that
this is a martingale, which means that if s > t, then

E[Ms | Ft] = Mt .

(g) The standard Poisson process has intensity, or arrival rate, λ = 1.
Show that

E
[

∆M2 | Ft
]

= ∆t+ (smaller) as ∆t→ 0 .
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As usual, ∆M = Mt+∆t −Mt. Compare these to comparable facts
about standard Brownian motion (martingale, E

[
∆W 2 | Ft

]
). Con-

clude that Brownian motion is not the unique process with these
properties.

(h) Calculate the scaling of E
[

∆W 4 | Ft
]

and E
[

∆M4 | Ft
]

with ∆t as
∆t→ 0.
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