http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2012/index.html

Always check the class message board on the blackboard site from home.nyu.edu before doing any work on the assignment.

Assignment 4, due October 8

Corrections: (Oct. 2: Due date is October 8, parts (b) and (c) of question 3 were in the wrong order. The order is now correct.

Oct. 3: signs fixed in (1d) $(m_t \to -\infty)$ and (1e) (F = -Cu).

1. (Brownian motion with reflection) A reflecting Brownian motion, with a reflecting barrier at x = a, is a stochastic process that never crosses a and does not stick to a. For $X_t \neq a$, X_t acts like a Brownian motion. Suppose $X_0 = 0$ and a > 0. A reflecting Brownian motion has a probability density, $X_t \sim u(x,t)$, that satisfies the heat equation if x < a, and has

$$\int_{-\infty}^{a} u(x,t) dx = 1. \tag{1}$$

- (a) The conservation formula (1) implies a boundary condition that u satisfies at x=a. What is this condition? Hint: What must the probability flux be at x=a? This boundary condition is called a reflecting boundary condition. For wikipedia lovers, it is also called a Neumann boundary condition.
- (b) Show that if v(x) is symmetric about the point a, which is the condition v(a-x) = v(a+x) for all x, and if v is a smooth function of x, then v satisfies the boundary condition from part a.
- (c) Use the method of images from this week's material to write a formula for the u(x,t) that satisfies the correct initial condition for $X_0 = 0$ and boundary condition at a > 0. It is closely related to the formula from class.
- (d) Write a formula for $m_t = \mathrm{E}[X_t]$ for reflecting Brownian motion. The cumulative normal distribution is $N(z) = \mathrm{P}(Z \leq z)$, when $Z \sim \mathcal{N}(0,1)$. Derive a formula for m_t in terms of this and other explicit functions. Verify that m_t is exponentially small for small t. Verify that $m_t \to -\infty$ as $t \to \infty$ and scales as $t^{1/2}$.
- (e) It is argued (possibly later in this course, or the book *Stochastic Integrals* by Henry McKean) that a reflecting Brownian motion is kept inside the allowed region $\{x \leq a\}$ by a rightward force at the reflecting boundary. This force is different from zero only when $X_t = a$. The force is just strong enough to prevent $X_t > a$. This picture suggests that the total force is proportional to the total time spent at the boundary. Since only the boundary force has a preferred direction,

if $X_0 = 0$, it may be that

$$E[X_t] = E\left[\int_0^t F_s ds\right] ,$$

both sides being negative. Since the force only acts when $X_t = a$, it may be plausible that $\mathrm{E}[\,F_s] = -C\,u(a,s)$. Verify that this picture is true, at least as far as the formula

$$m_t = -C \int_0^t u(x,t) dt .$$

Find C > 0.

2. (Kolmogorov reflection principle) Let X_n be a discrete time symmetric random walk on the integers, positive and negative. The random walk is symmetric if $P(x \to x + 1) = P(x \to x - 1)$. Suppose the walk starts with $X_0 = 0$. Let $H_a(t) = P(X_n = a \text{ for some } n \le t)$ be the hitting probability for this discrete process. Show that if a > 0, then

$$P(H_a(t)) = P(X_t = a) + 2P(X_t > a)$$
 (2)

Hint: The discrete time version of the argument from class is rigorous.

- 3. (Brownian bridge construction of Brownian motion) Suppose X_t is a standard Brownian motion. Suppose $0 \le t_1 < t_2 < t_3$.
 - (a) Write the two dimensional PDF of (X_{t_2}, X_{t_3}) conditional on X_{t_1} . Call it $u(x_2, x_3, s_2, s_3 | x_1)$, where x_j refers to the value of X_{t_j} and $s_1t_2 t_1$ and $s_2 = t_3 t_2$. These are the time increments between t_1 and t_2 , and t_2 and t_3 , respectively.
 - (b) Conditional on $X_{t_1} = x_1$ and $X_{t_3} = x_3$, find the distribution of X_{t_2} . This is $\mathcal{N}(\mu, \sigma^2)$ for some μ and σ^2 that depend on x_1, x_3, s_1 , and s_2 . Hint: The conditional density of X_{t_2} is the exponential of a quadratic. Identify the mean and variance by completing the square in the exponent.
 - (c) Show that the formula of part (b) is the same as the conditional density of X_{t_2} given any number of additional values for times $t_k < t_1$ and/or $t_k > t_3$. For example, conditioning on $X_{t_4} = x_4$ with $t_4 > t_3$ does not change the answer to (b) in the sense that x_4 and t_4 do not appear in the answer.
 - (d) Specialize to the case $s_1 = s_2 = \Delta t$. Compare the variance of X_{t_2} with both X_{t_1} and X_{t_3} specified to the variance with only X_{t_1} specified
 - (e) (not an action item) You can use these formulas to generate Brownian motion paths in a different way. First generate $X_1 \sim \mathcal{N}(0,1)$ and $X_0 = 0$. Then use the result of (d) to generate $X_{1/2} \sim \mathcal{N}(\cdot,\cdot)$

(results of (d)). Then use (d) again to generate $X_{1/4}$ using X_0 and $X_{1/2}$, and $X_{3/4}$ from $X_{1/2}$ and X_1 . Continuing in this way you can make a Brownian motion path in as much detail as you want.

- 4. (backward equation) Let X_t be a standard Brownian motion starting from $X_0 = 0$. Let $\tau = \min\{t \text{ so that } |X_t| = 1\}$. Find the expected hitting time $E[\tau]$. Hint:
 - (a) Suppose V(x,t) is a running time reward function and the total reward starting from x at time t is

$$\int_t^\tau V(X_s,s)\,ds\;.$$

There the process starts with $X_t = s$, and τ is the first hitting time after t, and $|x| \leq 1$. Define the value function for this to be

$$f(x,t) = \mathbf{E}_{x,t} \left[\int_t^{\tau} V(X_s, s) \, ds \right].$$

Figure out the PDE that f satisfies.

- (b) The case V(x,t) = 1 gives the expected hitting time.
- (c) There is a subtlety here that we need to show $E[\tau] < \infty$. The assignment for a future week will show that there is a x > 0 so that $P_{x,0}(\tau > t) \le e^{-ct}$.
- 5. (Computing) New this week: Download the file coding.pdf. It contains guidelines for coding. Ultimately they will save you time in the computing assignments. The material for this week contains the PDF

$$M_t = \max_{0 \le s \le t} X_s$$

and a formula for

$$S_{t,a}(x)dx = P(x \le X_t \le x + dx \mid X_s < a \text{ for } 0 \le s \le t)$$

You made histograms of these distributions last week. This week, put the exact formulas on the graphs to see whether they agree. Play with parameters to see how good a fit you can get in a reasonable amount of computer time.