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ii PREFACE

This book expands on the material in the one semester Masters level class
with the same name I taught several times at the Courant Institute of NYU.
A majority of the students were from our masters program in financial math-
ematics but there always was a healthy minority from disciplines ranging from
physics and chemistry to economics and statistics. Over the years I have experi-
mented with various forms of the material and presentation styles. This version
have proven more effective than my earlier attempts. It benefits from years of
mostly friendly feedback from many students, for which I am very grateful.

The class and the book present a succinct introduction to random processes
as viewed by this applied mathematician. There are four main goals: some
important properties of random processes, an appreciation of one mathemati-
cal formalism for describing and studying random processes, the techniques for
creating a mathematical model of a random system, and methods for making
quantitative calculations about the model. I always assume that the studen-
t/reader wants to apply these ideas to real problems.

This book is not completely rigorous in the mathematical sense. Many
of the hardest theorems are not proven and serious mathematical issues go
unmentioned. I have included quantitative arguments, such as the convergence
of approximations to the Ito integral. This is similar to many Calculus textbooks
that explain the convergence of Riemann sums without proving the completeness
of the real number system. The industrious reader with time to kill will have no
trouble finding rigorous versions. But many readers do not have the time nor the
inclination for a deep and extended study of the measure theoretic foundations
of probability theory.

The prerequisites for the book are as linear algebra, multivariate calculus,
and basic probability. The book uses the level of mathematical maturity I
found was appropriate for most students in the class. The book has many com-
putational exercises that require the student to use some programming system.
Students used systems ranging from direct C/C++ programming to packages
such as Matlab and R, to spreadsheets and Visual Basic.
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2 CHAPTER 1. DISCRETE PROBABILITY

This section covers the basic ideas of discrete probability and conditional
expectation. The material might seem dry now, but examples are coming. We
develop the modern view of stochastic processes, partially revealed information,
and conditional expectation. These are are easy to understand in the discrete
setting because they are simple restatements of classical conditional expectation.
The modern formalism is not always helpful for simple problems, but it can be
just the thing for understanding more subtle stochastic processes and decision
problems under incomplete information.

A central role in this discussion is played by algebras (systems) of sets that
convey a state of partial information. It may seem artificial at first, but sets
and algebras of sets are a convenient framework that makes general abstract
probability simple. The review here is not so much to remind the reader of
basic discrete probability, but to use it as a simple context in which to explain
the role of algebras of sets.

Computational methods are an essential part of all fields of applied mathe-
matics today. For Stochastic Calculus, much of this computation is stochastic
simulation and Monte Carlo – the distinction is explained below.

1.1 Discrete probability

In abstract probability, we imagine that there is some experiment or trial that
produce a randoms outcome. This outcome is called ω. The set of all possible
outcomes is Ω, which is the probability space. The probability space Ω is discrete
if it is finite or countable.1 We discuss only discrete probability here. The
outcome ω is often called a random variable. I avoid that term because I (and
most other people) want to call functions X(ω) random variables, see below.

The probability of a specific outcome is P (ω). It is a number between 0 and
1, with P = 0 for events that never happen and P = 1 is for events that we know
(before doing the experiment) will happen. A probability cannot be negative.
We always assume that

∑
ω∈Ω

P (ω) = 1. This is the statement that Ω is a complete

list of all possible outcomes. If the experiment that produces ω has multiple
steps, then the description of ω has multiple corresponding components. For
example, if the experiment calls for measuring three numbers, then ω has three
components and may be considered to be an element of a three dimensional
space.

The interpretation of probability is a matter for philosophers, but we might
say that P (ω) is the probability of outcome ω happening, or the fraction of
times event ω would happen in a large number of independent trials. The
philosophical problem is that it may be impossible actually to perform a large
number of independent trials. People also sometimes say that probabilities

1A set is countable if it is possible to make an infinite list of all elements in the set. For
example, the rational numbers between 0 and 1 are countable because of the list: (1) 1

2
, (2)

1
3

, (3) 2
3

, (4) 1
4

, (5) 2
4

, (6) 3
4

, (7) 1
5

, etc. The set of all real numbers between 0 and 1 is not
countable in this sense.
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represent our often subjective (lack of) knowledge of future events. Probability
1 means something that is certain to happen, while probability 0 is for something
that cannot happen. “Probability zero ⇒ impossible” is strictly true only for
discrete probability.

An event is a set of outcomes, which is the same as a subset of Ω. The
probability of an event is the sum of the probabilities of the outcomes that
make up the event

P (A) =
∑
ω∈A

P (ω) . (1.1)

Usually, we specify an event in some way other than listing all the outcomes
in it (see below). We do not distinguish between the outcome ω and the event
that that outcome occurred A = {ω}. That is, we write P (ω) for P ({ω}) or
vice versa. This is called “abuse of notation”: we use notation in a way that is
not absolutely correct but whose meaning is clear.

The formula (1.1) defines the probabilities of events from the probabilities of
the outcomes that make up the event. This is possible only when the probability
space is discrete. In this book, a probability space that is not discrete is called
continuous. Roughly speaking, the difference between continuous and discrete
probability is the difference between integrals and sums. The probabilities of
events in continuous probability are found by integrating using a probability
density or probability measure.

Here is a simple example of the above definitions. Suppose you toss a coin
four times and that each output is H (heads) or T (tails).2 The outcome “first
H, then T, then H, then H” is written ω = HTHH. The possible outcomes are
Ω = {HHHH,HHHT,HTHH, . . . ,TTTT}. The number of outcomes is #(Ω) =
|Ω| = 16. If each outcome is equally likely, P (ω) = 1

16 for each ω ∈ Ω. If A is
the event that the first two tosses are H, then

A = {HHHH, HHHT, HHTH, HHTT} .

There are 4 elements (outcomes) in A, each having probability 1
16 Therefore

P (first two H) = P (A) =
∑
ω∈A

P (ω) =
∑
ω∈A

1
16

= 4 · 1
16

=
1
4
.

Set operations apply to events since events are sets of outcomes. If A and B
are events, then “A and B” means that both A and B happened. That means
that the outcome ω is in both A and B. Thus, “A and B” is the intersection
A ∩ B. Similarly, “A or B” is the event consisting of outcomes ω with ω ∈ A
or ω ∈ B or both.3 Thus “A or B” is the union A ∪ B. The complement of A,
Ac, is the event “not A”, the set of outcomes not in A. The empty event is the
empty set, the set with no elements, ∅. The probability of ∅ is zero because the
sum (1.1) that defines it has no terms. The complement of ∅ is Ω. Events A

2Most coins have a face, or head, on one side. A U.S. nickel last made in 1938 has a buffalo
with a tail on the other side.

3There is an exclusive or, which means A or B, but not both. The “or” here is not exclusive.
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and B are disjoint if A ∩ B = ∅. Event A is contained in event B, A ⊆ B, if
every outcome in A is also in B. For example, if the event A is as above and B
is the event that the last toss in T , then |B| = 8, and the event “A and B” is
A ∩B = {HHHT,HHTT}. If C is the event the first toss is H, then A ⊆ C.

The representation (1.1) implies some of the basic facts about probabilities
of events. First P (A) ≤ P (B) if A ⊆ B. Also, P (A) + P (B) ≥ P (A ∪B), with
P (A) + P (B) = P (A ∪B) if P (A ∩B) = ∅, but usually not otherwise. Clearly,
P (A) + P (Ac) = P (Ω) = 1.

1.2 Conditional probability

The probability of outcome A given that B has occurred is the conditional
probability of A given B,

P (A |B) =
P (A ∩B)
P (B)

. (1.2)

This is the fraction of B outcomes that are also A outcomes. The formula (1.2)
is called Bayes’ rule. It is often used to calculate P (A∩B) once we know P (B)
and P (A |B). The formula for that is P (A ∩B) = P (A |B)P (B).

Events A and B are independent if P (A | B) = P (A). That is, knowing
whether or not B occurred does not change the probability of A. In view of
Bayes’ rule, this is expressed as

P (A ∩B) = P (A) · P (B) . (1.3)

For example, suppose A is the event that two of the four tosses are H, and B is
the event that the first toss is H. Then A has 6 elements, B has 8, and A ∩ B
has 3 (check this by listing them). If each outcome has probability 1

16 , this gives
P (A ∩ B) = 3

16 while P (A) = 6
16 and P (B) = 8

16 = 1
2 , and (1.3) is satisfied.

Knowing that half the tosses are H (event A) does not change the probability
that the first toss was H. Note that the definition (1.3) is symmetric. If A is
independent of B then B is independent of A. Knowing that the first toss was
H (event B) does not change the probability that exactly half the tosses are H.

On the other hand, if C is the event that 3 of the 4 tosses are H, then
P (C) = 4

16 = 1
4 and P (B ∩ C) = 3

16 , because

B ∩ C = {HHHT, HHTH, HTHH}

has three elements. Bayes’ rule (1.2) gives P (B |C) = 3
16/

3
4 = 3

4 . Knowing that
there are 3 heads in all raises the probability that the first toss is H from 1

2 to
3
4 .

These two examples show that the question of independence is a question
about the equality (1.3). In many cases events A and B are obviously inde-
pendent because whatever factors determine whether ω ∈ A have nothing to do
with the what determines whether ω ∈ B. This might be the case, for example,
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for two independent coin tosses. In other cases the events may be intertwined
and yet technically independent.

Let us fix the event B with P (B) > 0, and discuss the conditional probability
PB(ω) = P (ω | B). There are two slightly different ways to discuss PB . One
way is to take B to be the probability space and define

PB(ω) =
P (ω)
P (B)

for all ω ∈ B. Since B is the probability space for PB , we do not define PB
for ω /∈ B. This PB is a probability because PB(ω) ≥ 0 for all ω ∈ B and∑
ω∈B PB(ω) = 1. A slightly different way to think of PB is to keep Ω as the

probability space and set the conditional probabilities to zero for ω /∈ B. If we
know the event B happened, then the probability of an outcome not in B is
zero. This version of conditional probability is:

PB(ω) = P ({ω} | B) =

{
P (ω)
P (B) for ω ∈ B,
0 for ω /∈ B.

(1.4)

Either way, we restrict to outcomes in B and renormalize the probabilities by
dividing by P (B) so that they again sum to one.

We can condition a second time by conditioning PB on another event, C.
Then PB(ω | C) is the conditional probability of ω given that C occurred, given
that B occurred. It seems natural that this should be be the P conditional
probability of ω given that both B and C occurred. Bayes’ rule verifies this
intuition. If ω ∈ B and ω ∈ C, then

PB(ω | C) =
PB(ω)
PB(C)

=
P (ω | B)
P (C | B)

=
P (ω)
P (B)

· 1
P (C ∩B)
P (B)

=
P (ω)

P (B ∩ C)
= PB∩C(ω) .

You can check that these definitions give PB(ω | C) = 0 if ω /∈ B ∩ C. The
conclusion is the tower property, that conditioning on B and then on C is the
same as conditioning just once on B ∩ C. Recurrence relations based on the
tower property are very important in stochastic calculus.

1.3 Algebras of sets, partial information

The study of random processes relies on the idea of states of partial information.
At a given time one may have some information about ω but not yet know
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everything about it. If you toss coins sequentially, there is a time when you
know the results of the first two tosses but not the third or fourth. The concept
of an algebra of sets helps formalize the idea of partial information.

An algebra of sets, F , is a a collection of subsets of Ω. We interpret A ∈ F
to mean that in our state of partial information we know whether ω ∈ A or
not. For example, if the partial information is the outcomes of the first two
tosses, then the event A = {HHHH,HHHT,HHTH,HHTT} is in F because it
is the event “first two tosses are H”. The event B =“exactly one H”, which is
{HTTT,THTT,TTHT,TTTH} is not in F because we may not know after just
two tosses whether ω ∈ B. It is possible that we do know (e.g. if ω ∈ A), but
it is possible that we do not.

The mathematical definition is as follows. The set of events F is an algebra
if there is at least one A ∈ F and

i. A ∈ F implies that Ac ∈ F .

ii. A ∈ F and B ∈ F implies that A ∪B ∈ F and A ∩B ∈ F .

These are natural from the point of view of partial information. If we know
whether A occurred then we also know whether “not A”(= Ac) occurred. If we
know whether A happened and whether B happened, then we can tell whether
“A and B” happened. We definitely know whether ∅ = A ∩ Ac happened (it
did not) and whether Ω = A∪Ac happened (it did). For historical reasons (see
below), events in F are called measurable with respect to F .

As another example, suppose we know only the results of the tosses but not
the order, which might happen if we toss 4 identical coins at the same time.
Some measurable sets are (with an abuse of notation)

{4} = {HHHH}
{3} = {HHHT, HHTH, HTHH, THHH}

...
{0} = {TTTT}

The event {2} has 6 outcomes (list them), so its probability is 6 · 1
16

=
3
8

.
There are other events measurable in this algebra, such as “fewer than 3 H”
= {2} ∪ {1} ∪ {0}. The events {4} , . . . , {0} generate the algebra in the sense
that any other event in the algebra is determined by some combination of these.

An algebra of sets is a σ−algebra (pronounced “sigma algebra”) if it is closed
under countable unions. The distinction between algebra and σ−algebra makes
sense only if Ω is infinite. Suppose An ∈ F is an infinite sequence of events
measurable in F . Let A = ∪nAn be the set of outcomes in any of the An.
If F is a σ−algebra, then A ∈ F , too. The reader can check that an algebra
closed under countable unions is also closed under countable intersections, and
conversely. An algebra is automatically a σ−algebra if Ω is finite. If Ω is infinite,
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an algebra might or might not be a σ−algebra.4 In a σ−algebra, it is possible
to take limits of infinite sequences of events, just as it is possible to take limits
of sequences of real numbers. We will never (again) refer to an algebra of events
that is not a σ−algebra.

A random variable is a quantity whose value is random. If X is a random
variable, a probability model of X says how X is determined by the outcome
of some experiment. This is the same as specifying a probability space Ω, a
probability function P (ω), and a function X = X(ω). For example, if Ω is
the 16 element coin tossing space then X(ω) could be the number of heads
in ω (so X(HHHT ) = 3, X(TTTT ) = 0, etc.). We sometimes call ω itself
the random variable and X(ω) a function of a random variable. It is common
to omit the argument ω in formulas involving X. It also is traditional to write
random variables with capital letters and use the corresponding lower case letter
for a value the random variable might have. For example, we write Pr(X =
x) =

∑
ω|X(ω)=x P (ω). The cumulative distribution function (or CDF or just

distribution function) of X is F (x) = Pr(X ≤ x).
We often describe events in words. For example, we might write P (X ≤

x) where, strictly, we might be supposed to say Ax = {ω | X(ω) ≤ x} then
P (X ≤ x) = P (Ax). For example, if there are two random variables on the
same probability space, X1 and X2, we might try to calculate the probability
that they are equal, P (X1 = X2). Strictly speaking, this is the probability of
the set of ω so that X1(ω) = X2(ω).

A random variable X(ω) is measurable with respect to the algebra F if the
information in F is enough to determine the value of X. More precisely, for
any number, x, we can consider the event that X = x, which is Bx = {ω :
X(ω) = x}. In discrete probability, Bx will be the empty set for almost all
x values and will not be empty only for those values of x actually taken by
X(ω) for one of the outcomes ω. The function X(ω) is measurable with respect
to F if the sets Bx are all measurable. It is common to write X ∈ F (an
abuse of notation) to indicate that X is measurable with respect to F . For
example, suppose F is the algebra generated by the sets {0}, {1}, etc. above.
The random variable X = number of H minus number of T is measurable with
respect to this algebra, but the function X = number of T before the first H is
not (find an x and Bx /∈ F to show this).

There are several ways to describe a σ−algebra. One way is to give a family
of generating events. Suppose there are events A1, . . ., An that you know. The
algebra generated by these sets is the one that expresses the information you
have by virtue of knowing these events. For example, if you know whether A1

happened and whether A2 happened, then you also know Ac1, and A1 ∩A2, etc.
We denote by F the σ−algebra generated by the Ak. One definition of F is
that it consists of all events A that are formed by finitely many or countably
many set operations (intersection, union, complement) from the sets Ak.

4Let Ω be the set of integers and A ∈ F if A is finite or Ac is finite. This F is an algebra
(check), but not a σ−algebra. For example, if An is the first n even integers (a finite set),
then A = ∪nAn is the set of all even integers. However A is not in F because neither A not
Ac is finite.
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An equivalent definition is that F is the smallest σ−algebra that contains
all the events Ak. There is a smallest one because if F1 and F2 are two alge-
bras, then F1 ∩ F2 also is a σ−algebra, and is contained in both F1 and F2.
The intersection of all σ−algebras that contain the Ak is the smallest one that
contains the Ak. This is particularly convenient when defining the σ−algebra
generated by an infinite family of events. It is the intersection of all σ−algebras
that contain all the events.

A function X(ω) defines a σ−algebra of sets generated by the sets Bx defined
above. This is the smallest σ−algebra, FX , so that X is measurable with respect
to F . Suppose Y (ω) is another random variable, then Y ∈ FX if the value of
Y is known once the value of X is known. That is the same as saying there is
a function y = u(x) so that Y (ω) = u(X(ω)) or all ω ∈ Ω.

As an example, let F be generated by the events Ak = {k} above. Let
X(ω) = k for all ω ∈ Ak. Then X(ω) is the number of heads in ω and F
is the algebra generated by N . Suppose Y (ω) is the number of heads minus
the number of tails. Then Y ∈ F and Y = 2X(ω) − 4. This means that
u(x) = 2x− 4.

We can consider the algebra generated by a family of functions X1, X2, . . ..
This is the algebra generated by the algebras FX1 , FX2 , etc. It is possible
to show that Y ∈ F if there is a function y = u(x1, x2, . . .) so that Y (ω) =
u(X1, X2, . . .). For example, let Xk(ω) be the result of the k-th toss. If Y is
a random variable that is measurable with respect to the algebra generated by
FX1 and FX2 , then the value of Y is determined by the first two tosses.

Suppose we learn the values of random variables Xk one at a time, first
X1(ω), then X2(ω), etc. After learning Xk, our state of knowledge is modeled
by the σ−algebra Fk generated by X1, . . . , Xk. Now suppose Yk is a decision
that must be made using the the knowledge of X1, . . . , Xk only. Then there is
a function uk(x1, . . . xk) so that Yk(ω) = uk(X1(ω), . . . , Xk(ω)). This is what it
means to say that Yk ∈ Fk. A sequence of σ−algebras Fk with Fk ⊆ Fk+1 is a
filtration. A filtration may be generated by a sequence of random variables, but
there are other ways to create filtrations. A family of random variables Yk ∈ Fk
is called progressively measurable, or adapted, or non-anticipating with respect
to this filtration, though these terms have slightly different meanings in more
technical situations.

A σ−algebra determines an equivalence relation and partitions the probabil-
ity space into equivalence classes. Outcomes ω1 and ω2 are distinguishable in F
if there is some event in F that contains ω1 but not ω2. If ω1 and ω2 are not
distinguishable, they are called equivalent. We write ω1 ∼ ω2 in that case. Put
slightly differently, ω1 ∼ ω2 if ω1 ∈ A⇒ ω2 ∈ A for every A ∈ F . For example,
in algebra that counts the number of heads, THTT ∼ TTTH. Since F is an
algebra, ω1 ∼ ω2 also implies that ω1 /∈ A ⇒ ω2 /∈ A (think this through). It
is easy to check that any ω has ω ∼ ω (similar to itself), and, for any three
outcomes, ω1 ∼ ω2 and ω2 ∼ ω3 implies that ω1 ∼ ω3 (transitivity). A relation
that has these properties is an equivalence relation.

Any equivalence relation defines equivalence classes. The equivalence class of
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ω, written5 Aω, is the set of outcomes ω′ that are not distinguishable from ω in
F . This definition may be written as Aω = {ω′ with ω′ ∼ ω}. In discrete prob-
ability, equivalence classes are measurable. (Proof: for any ω′ not equivalent to
ω in F , there is at least one B ∈ F with ω ∈ B but ω′ /∈ B. Choose any one of
these and call it Bω′ . The sets Bω′ form a finite or countable family because Ω
is discrete. Moreover, Aω = ∩ω′Bω′ , because any ω′′ that is indistinguishable
from ω in F is in all the events on the right, and any ω′ that is distinguishable
from ω is not in Bω′ .) In the example above, the equivalence class of THTT is
the event ATHTT = {HTTT, THTT, TTHT, TTTH}.

A partition of Ω is a collection of events, P = {B1, B2, . . .} so that every
outcome ω ∈ Ω is in exactly one of the events Bk. For example, in the coin
tossing example, knowing the first two tosses partitions the space of all outcomes
into the four events B1 = {HH · · · }, B2 = {HT · · · }, B3 = {TH · · · }, and
B4 = {TT · · · }. Every ω ∈ Ω is in one of the Bk. For example, ω = THHT ∈ B3.
No outcome is in more than one of the Bk. For another example, the events
Ak = {k} above are a partition of Ω into five events. More generally, X(ω) a
random variable partitions Ω into the sets Bx = {ω | X(ω) = x}. This is the
partition corresponding to the σ− algebra generated by X.

The equivalence classes of an equivalence relation form a partition of Ω. Two
equivalence classes either are identical or disjoint. To see this, suppose Aω and
Aω′ are two equivalence classes. If Aω and Aω′ are not disjoint, then there is
some ω′′ with ω′′ ∈ Aω and ω′′ ∈ Aω′ , which is to say that ω′′ ∼ ω and ω′′ ∼ ω′.
If the equivalence relation is transitive and symmetric, this implies that ω ∼ ω′.
Now, if ω′′′ ∈ Aω′ then ω′′′ ∼ ω′ ∼ ω, so ω′′′ ∈ Aω. This shows that if Aω and
Aω′ have any elements in common, then every element in Aω′ also is in Aω, and
vice versa. Thus, if two equivalence classes are not disjoint, they are the same.

Partitions and σ−algebras are equivalent in discrete probability. The σ−algebra
generated by P, which we call FP , consists of events that are unions of events in
P (Why are complements and intersections not needed?). A σ−algebra, F , de-
termines a partition, PF , described above. If you start with a partition, P, then
form the σ−algebra FP , then the partition for FP is just P. Similarly, if you
start with F and form PF , then the algebra corresponding to PF is FPF = F .
We use both points of view because partitions are easier to work with in discrete
probability while σ−algebras are much better in continuous probability.

1.4 Conditional expectation with partial infor-
mation

A random variable X(ω) has expected value

E[X] =
∑
ω∈Ω

X(ω)P (ω) .

5Other notations for the equivalence class of ω are ω and (ω).
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Note that we do not write ω on the left. We think of X as simply a random
number and ω as a story telling how X was generated. This is the average value
in the sense that if you could perform the experiment of sampling X many
times then average the resulting numbers, you would get roughly E[X]. This is
because P (ω) is the fraction of the time you would get ω and X(ω) is the number
you get for ω. The operation of taking the expected value (or expectation) is
linear. That means that if X1(ω) and X2(ω) are two random variables and c1
and c2 are constants, then E[c1X1 + c2X2] = c1E[X1] + c2E[X2].

Conditional expectation is the expected value in a state of partial informa-
tion. The classical conditional expectation with respect to an event B. The
information is that ω ∈ B. This conditional expectation is defined from condi-
tional probability (1.4) in the natural way

E[X|B] =
∑
ω∈B

X(ω)P (ω|B) . (1.5)

For example, we can calculate

E[# of H in 4 tosses | at least one H] .

To get Pr(B) for the event B = { at least one H}, note that only ω =TTTT in
not in B. Therefore |B| = 15 and Pr(B) = 15

16 . That implies that

P (ω | B) =
1
16
15
16

=
1
15

for any ω ∈ B. Let X(ω) be the number of H in ω. Unconditionally, E[X] = 2,
which means

1
16

∑
x∈Ω

X(ω) = 2 .

Note that X(ω) = 0 for all ω /∈ B (only TTTT), so∑
ω∈Ω

X(ω)P (ω) =
∑
ω∈B

X(ω)P (ω) ,

and therefore

1
16

∑
ω∈B

X(ω)P (ω) = 2

15
16
· 1

15

∑
ω∈B

X(ω)P (ω) = 2

1
15

∑
ω∈B

X(ω)P (ω) =
2 · 16

15

E[X | B] =
32
15

= 2 + .133 . . . .
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Knowing that there was at least one H increases the expected number of H by
.133 . . ..

Suppose P = {B1, B2, . . .} is a partition of Ω. The law of total probability is
the formula

E[X] =
∑
k

E[X | Bk]P (Bk) . (1.6)

This is easy to understand: exactly one of the events Bk happens. The expected
value of X is the sum over each of the events Bk of the expected value of X
given that Bk happened, multiplied by the probability that Bk did happen. The
mathematical statement of this argument is a combination of the definitions of
conditional expectation (1.5) and conditional probability (1.4):

E[X] =
∑
ω∈Ω

X(ω)P (ω)

=
∑
k

(∑
ω∈Bk

X(ω)P (ω)

)

=
∑
k

(∑
ω∈Bk

X(ω)
P (ω)
P (Bk)

)
P (Bk)

=
∑
k

E[X | Bk]P (Bk) .

This fact underlies the recurrence relations that are among the primary tools of
stochastic calculus. It will be reformulated below as the tower property when
we discuss the modern view of conditional probability.

Decision trees illustrate one of the uses of conditional probability. A decision
tree is a model for a sequence of random choices, each dependent on the earlier
ones. See Figure 1.1. Let X1 be the first decision and X2 the second. Then
X1 = H or X1 = T, and similarly for X2. The numbers on the top row are
probabilities, so Pr(X1 = H) = 2

3 and Pr(X1 = T) = 1
3 . The numbers on

the second row are conditional probabilities, conditioned on the value of X1,
so Pr(X2 = H | X1 = H) = 3

4 , and Pr(X2 = H | X1 = T) = 1
2 , etc. The

probability on the first row and the conditional probability on the second row
are combined using Bayes’ rule (1.2) as the following example. Define events
B1T = {X1 = T} and B2H = {X2 = H}. Then B1T∩B2H is the single outcome
ω = TH. Since Pr (B1T) = 1

3 and Pr (B2H and B1T) = 1
2 , we have

Pr (TH) = Pr (B2H ∩B1T) = Pr (B2H | B1T) · Pr (B1T) =
1
3
· 1

2
=

1
6
.

To summarize, a decision tree is a model given by specifying conditional prob-
abilities at each stage (after the first stage). Bayes’ rule allows you to compute
probabilities of sequences by multiplying conditional probabilities.

The decision tree also offers a good example of conditional expectation under
partial information. The numbers at the bottom of Figure 1.1 are “payouts”
for the corresponding sequences of decisions. For example, if ω = TH, then
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T H

T H T H 3/41/41/21/2

1/3 2/3

3 5 64

Figure 1.1: A two stage decision tree. The probability that the first decision is
H is 2

3 . If the first decision is H, the probability that the second one is T is 1
4 .

The payout for decisions TH is V = 4. The payout for HH is V = 6, etc.

V (ω) = 4. For reasons that will become clear, we call the expected payout f0.
Its value is

f0 = E[V ] =
∑
ω∈Ω

V (ω)P (ω)

= 3 · P (TT ) + 4 · P (TH) + 5 · P (HT ) + 6 · P (HH)

= 3 · 1
3
· 1

2
+ 4 · 1

3
· 1

2
+ 5 · 2

3
· 1

4
+ 6 · 2

3
· 3

4
= 5 .

Let F be the algebra generated by X1, which is the first decision. This algebra
is generated by the partition of Ω into two pieces, B1T = {TT, TH}, and B1H =
{HT,HH}. The conditional expectations are

f1(T ) = E[V | B1T] = 3 · P (TT | B1T) + 4 · P (TH | B1T)

= 3 · 1
2

+ 4 · 1
2

= 3.5 ,
f1(H) = E[V | B1H] = 5 · P (HT | B1H) + 6 · P (HH | B1H)

= 5 · 1
4

+ 6 · 3
4

= 5.75 .

The probabilities used in the f1 calculations are the conditional probabilities
given in in the second row of Figure 1.1. The law of total probability (1.6) gives
the overall mean, f0, as the mean of the conditional means:

f0 = f1(T ) · P (B1H) + f1(H) · P (B1H)

5 = 3.5 · 1
3

+ 5.75 · 2
3
.

The previous paragraph gives two ways to calculate f0. The direct method
first calculates the probabilities of all four paths through the decision tree. The
indirect method computes the conditional expectations f1, then combines these
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to get f0. The indirect method has advantages over the direct method. For one
thing, it uses less arithmetic. In this two level tree it was three rather than four
multiplications, but for an n level tree it is n(n + 1)/2 instead of 2n, which is
a big difference. For n = 10 it is 55 instead of 1024. Another advantage is the
extra information in the value function, f .

A fancier modern conditional expectation handles the situation where the
information is about more than a single event. If X is a random variable and F is
a σ−algebra, then the conditional expectation with respect to F is written Y =
E[X|F ]. It is a random variable whose value is determined by the information
in F . If PF = {B1, . . .} is the partition corresponding partition, then the
information in F is which Bj ω falls into. The value of Y is the classical
conditional expectation (1.5) of X for this Bj :

Y (ω) = E[X | Bj ] if ω ∈ Bj . (1.7)

The modern definition (1.7) is consistent with the classical definition (1.5).
A single set B defines a partition: B1 = B, B2 = Bc. In this case (1.7) gives
Y (ω) = E[X | B] if ω ∈ B, and Y (ω) = E[X | Bc] if ω /∈ B.

The modern point of view – conditional expectation as a function – makes
particular sense when the partial information is the value of some function
Z(ω). Since the partial information is the value of Z, it makes sense that the
conditional expectation is a function of Z. If f(z) = E[X | Z(ω) = z], then
Y (ω) = f(Z(ω)). In the decision tree example above, let Z be the first decision,
so Z(TT ) = T , Z(HT ) = H, etc. Then the possible values are z = T and
z = H. The conditional expectation with respect to this information is the
value function f1 above.

Another example is given in Table 1.1. Take Ω to be sequences of 4 coin
tosses. Take Z(ω) to be the number of H tosses and let F to be the σ−algebra
generated by Z. This is generated by the partition P = {{0} , {1} , . . .} cor-
responding to the values z = 0, z = 1, etc. Let X(ω) be the number of H
tosses before the first T (e.g. X(HHTH) = 2, X(TTTT) = 0, X(HHHH) = 4,
etc.). We calculate (table below): f(0) = Y ({0}) = 0, f(1) = Y ({1}) = 1/4,
f(2) = Y ({2}) = 2/3, f(3) = Y ({3}) = 3/2, and f(4) = Y ({4}) = 4.
Note, for example, that HHTT and HTHT are equivalent in F , both in the
equivalence class B2. This is because the information in F does not distin-
guish HHTT from HTHT. Therefore Y (HHTT) = Y (HTHT), even though
X(HHTT) 6= X(HTHT). The common value Y (HHTT) = Y (HTHT) = 1

4 )
is the average value of X over the outcomes in the equivalence class B2.

Partitions and σ−algebras give a way to express the idea of adding new
information. We say that σ−algebra F is an extension of σ−algebra G if G ⊆ F ,
which is to say that B ∈ G =⇒ B ∈ F . This means that if the information in in
G determines whether B occurred, then the information in F also determines B.
Let PF and PG be the corresponding partitions of Ω. Then PF is a refinement
of PG if every C ∈ PG is a union of elements of PF , written

C = B1C
∪ · · · ∪BmC

, with BjC ∈ PF .
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z = 0, B0 = {0}
ω TTTT

X(ω) 0
expected value 0

z = 1, B1 = {1}
ω HTTT THTT TTHT TTTH

X(ω) 1 0 0 0
expected value (1 + 0 + 0 + 0)/4 = 1/4

z = 2, B2 = {2}
ω HHTT HTHT HTTH THHT THTH TTHH

X(ω) 2 1 1 0 0 0
expected value (2 + 1 + 1 + 0 + 0 + 0)/6 = 2/3

z = 3, B3 = {3}
ω HHHT HHTH HTHH THHH

X(ω) 3 2 1 0
expected value (3 + 2 + 1 + 0)/4 = 3/2

z = 4, B4 = {4}
ω HHHH

X(ω) 4
expected value 4

Table 1.1: Computing the conditional expectation of X = the number of H
before a T, conditioned on the number of H tosses in all.
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This is the same as saying that if C ∈ PG and B ∈ PF , then either B ⊆ C or
B is disjoint from C. If PF refines PG , and C ∈ PG , then the BjC ∈ PF with
BjC ⊆ C form a partition of C. The information in G divides ω into the sets
C ∈ PG . The extra information in F subdivides each C ∈ PG into the BjC .
The reader should take the time to verify that these notions are equivalent: F
extends G if and only if PF refines PG .

The tower property is the fact that that if G ⊆ F , and YF = E[X |F ], and
YG = E[X |G], then YG = E[YF |G]. To show this, let Z = E[YF |G]. We must
show that for any ω, Z(ω) = YG(ω). Let C ∈ PG be the G partition member
that ω is a member of. The tower property is the law of total probability (1.6)
applied to the conditional probability PC . Indeed, the events BjC above are a
partition of C. Moreover, for ω ∈ C,

Z = EPC
[YF ]

= EPC
[X | B1C

]PC(B1C
) + · · · .

Exercise 2 asks the reader to complete the argument.
Recall that a random variable X(ω) is one way to specify a σ−algebra.

Let F be this σ−algebra. The corresponding partition consists of the sets
Bx = {ω | X(ω) = x}. Let Y be another random variable. The conditional
expectation YF = E[X | F ] is determined by the function (described in several
ways, the last being most common and most informal)

f(x) = E[Y | X = x ] = EBx
[Y ] = Ex[Y ] . (1.8)

The formula is YF = f(X). This is convenient, but it may take some unwind-
ing to understand fully. Both sides are random variables, which makes them
functions of ω. The random variables are equal in the sense that for every ω,
YF (ω)) = f(X(ω)). It is easy to see that the definition (1.8) is just this state-
ment, if x is the value of X(ω). In the example of Table 1.1, the values are
f(0) = 0, f(1) = 1

4 , f(2) = 2
3 , f(3) = 3

2 , and f(4) = 4.

1.5 Simulation and Monte Carlo

Simulating a process means making samples that follow the probability distribu-
tion of the process. Monte Carlo is a computational technique that uses random
samples to evaluate probabilities or expected values or to solve other problems.
The most direct Monte Carlo method is to simulate a large number of samples
and then take the empirical mean from the simulation. There are much more
powerful Monte Carlo methods, but these are not the primary focus here.

The basis of most simulation and Monte Carlo is a random number genera-
tor. The ideal random number generator would produce a sequence of random
variables Uk uniformly distributed in [0, 1] and independent. In Java, the line of
code U = rand.nextDouble(); executed n times would produce n independent
uniforms. The actual procedure (“method” in Java) is a pseudo random number
generator. It is deterministic algorithm that returns numbers that look random
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import java.util.Random; // Put this at the top of the file before

// the executable code.

// Put this at the top of the code, execute it only once.

Random rand; // Declare the symbol "rand" to be a random

// number generator.

rand = new Random(); // Initialize this random number generator

double U; // A double precision variable, to be random.

.

// Use random numbers in the body of the code.

for ( . . . ) { // Start of the Monte Carlo loop

...

U = rand.nextDouble(); // These are the independent, uniform

// [0,1] samples.

...

} // End of the Monte Carlo loop

Figure 1.2: How to use the native uniform pseudo random number generator in
Java.

in many respects. Good (pseudo) random number generators produce numbers
that work as random numbers for most simulation and Monte Carlo purposes.

As we just said, a pseudo random number generator is a deterministic algo-
rithm. It has two parts. One updates an internal variable called the seed. The
other uses the seed to produce a number in the interval [0, 1]. Executing U =
rand.nextDouble(); is essentially equivalent to seed = seedUpdate(seed);
then U = getUnif(seed);. Successive calls to rand.nextDouble() produce
different results because the seen has changed. The actual seed typically is a
data structure consisting of one or more integers. In the Java implementation
of Figure 1.2, the seed is stored in (is a member of) the rand instance of the
class Random. The line rand = new Random();, among other things, gives the
seed an initial value.

Simulation or Monte Carlo computations can be repeatable or not depending
on how the seed is set. The version in Figure 1.2 uses the current time as the
initial seed. This means that successive runs have different initial seeds and
therefore different results. If the initialization is changed to

rand = new Random(1234L); // Initialize with a fixed seed

then the results will be the same each time. This can be helpful, for example,
in looking for bugs.
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In simulation and Monte Carlo, all random events are built from standard
uniforms (independent random variables uniformly distributed in the unit in-
terval) in some way. For example, suppose X is the result of a single coin toss,
with P (X = H) = p. If U is a standard uniform, then p = P (U < p), so we can
make X like this:

U = rand.nextDouble();
if ( U < p ) X = H; // This has probability p
else X = T; // This has probability 1-p

While simulation just means producing samples of some kind of random
object, Monte Carlo means at the end of the day giving approximations to
numbers that themselves are not random. The simplest is the expected value
of a random variable, A = E[X]. If we can make independent samples of X, an
estimator of the mean is

Ân =
1
n

n∑
k=1

Xk . (1.9)

Statisticians often use a hat over a quantity to denote a statistical estimate of
it. So Â is an estimate of A. The estimation error is Ân − A. The weak law of
large numbers states that the probability of making an error of size ε goes to
zero as the simple size goes to infinity. More precisely, if E [|X|] <∞, then for
any ε > 0

lim
n→∞

P
(∣∣∣Ân −A∣∣∣ > ε

)
→ 0 as n→∞ . (1.10)

What is random in (1.10) is Ân; A is just a number.

The convergence theorem (1.10) never guarantees that
∣∣∣Ân −A∣∣∣ ≤ ε, even

though the probability of this is very small. It always is possible that Monte
Carlo estimates have large errors, even if large errors are very unlikely. If you
do a large number of Monte Carlo estimates, even if most of them are accurate,
it becomes likely that some are inaccurate.

A practical person hopes for a convergence statement more quantitative than
(1.10). Is n large enough so that the error is likely to be below a desired level?
Approximately what is P

(∣∣∣Ân −A∣∣∣ > ε
)

. If var(X) < ∞ the central limit

theorem applies and says that Ân is approximately Gaussian with mean A and
standard deviation

σ bA =
1√
n
σX . (1.11)

It is standard Monte Carlo practice – something every Monte Carlo practitioner
and every student should do – to estimate σX using

σ̂2
X =

1
n

n∑
k=1

(
Xk − Ân

)2

. (1.12)
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The estimator of the standard deviation is

σ̂X =

√√√√ 1
n

n∑
k=1

(
Xk − Ân

)2

.

Some people prefer to use n−1 instead of n in (1.12) because it makes the result
unbiased. If this matters, you don’t have enough data. Moreover, the relation
between σ2 and σ is nonlinear. The estimator of σ will have a small bias from
this nonlinearity even if the estimate of σ2 is unbiased.

The cumulative normal is N(x) = P (Z < x) when Z is a standard normal
random variable:

N(x) =
1√
2π

∫ x

−∞
e−z

2/2 dz .

Since we have to include two tails, the central limit theorem implies that if
Y ∼ N (µ, σ2) (i.e. Y is Gaussian with mean µ and variance σ2) then

P (|Y − µ| > kσ) = 1 − 2N(k) .

The values of N are well known. The probability of a one sigma error (k = 1)
is about 30%. A two sigma event (k = 2) has about 5% probability, and
three sigma is very unlikely. The central limit theorem makes these statements
approximately true of the Monte Carlo estimation error

P

(∣∣∣Ân −A∣∣∣ > k
σ̂X√
n

)
≈ 1− 2N(k) .

The quantity dσX√
n

often is called the Monte Carlo error bar, because it is indicated

as a bar around Ân on a graph. If Ân = 3.15 and dσX√
n

= .01, we might write
A = 3.15± .01. This means there is about a 66% chance that 3.14 < A < 3.16
and about a 95% chance that 3.13 < A < 3.17, etc.

You report error bars in different ways depending on who is looking at them.
You report one sigma error bars (as above) when the person has the scientific
training to understand what they mean. You can report two or even three sigma
error bars if the consumer appreciates the need for error bars but does not know
about gaussians.

This is not to say that you believe strongly that the error is within the
error bar – it has about at 30% chance of being outside. Rather you trust the
consumer of your information to understand the meaning of a one standard
deviation error bar and to double it (for example) for 95% conficence. You are
free to report a two or even three standard deviation error bar if you do not
trust the consumer of your information to understand the central limit theorem.
If you are in a business setting and cannot report error bars to a customer, you
should make sure to look at the error bars first to make sure they are small
enough for your purpose.
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1.6 Exercises and examples

1. Verify the law of total probability (1.6) in the example of the number
algebra. Letting X be the number of tails before a head, calculate E[X]
directly using

P (X = 0) = P (1st toss = H) =
1
2

P (X = 1) = P
(
1st toss = T and 2nd toss = H

)
=

1
2
· 1

2
etc.

Check that this gives the same answer as E[X|B0] · P (B0) + · · · .

2. Do the algebra to show that the tower property is a consequence of the
law of total probability in the conditional probability distribution PC .
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Markov chains are a simple class of models of dynamics with randomness.
Many specific useful models take the form of Markov chains. They also provide
a simple setting in which to understand one of the most useful ideas in stochastic
calculus – recursive calculation of probabilities and expectation values.

2.1 Discrete time stochastic processes

There is an abstract view of random dynamical systems in terms of successive
revealing of information. Let us suppose there is a time variable t that takes
discrete values t = 0, 1, . . .. The information available at time t is described by
the σ−algebra Ft. It is natural to suppose that Ft+1 is an extension of Ft. This
just says that all the information available at time t is still available at time
t+ 1. Such an expanding family of σ−algebras, F0 ⊆ F1 ⊆ · · · , is a filtration.

Let S, the state space, be a discrete (finite or countable) set. This set is a list
of the possible states of some system. The actual state of the system changes
with time in some random way. Let Xt be the state of the system at time t. The
random sequence Xt is a random process, or stochastic process. It is natural to
suppose that Xt is known at time t. This means that Xt is measurable in Ft,
and is written Xt ∈ Ft, though that is not literally true as Xt is not an event. If
Xt ∈ Ft for all t, then the random process Xt is adapted to, or non-anticipating,
or progressively measurable1 with respect to the filtration Ft.

This definition of stochastic process, a sequence measurable with respect to a
filtration, may seem hopelessly abstract. But there is a benefit to abstraction –
it strips away all unnecessary detail and leaves only what is absolutely necessary
to understand the situation. In this respect is is something like abstract art.
Figure 2.1 shows an abstract painting Night Creatures. All the irrelevant details
are gone and the important feelings are left clearly exposed.

A sequence of states X0, X1, . . ., is a path in S. If a < T , we write
X[a,T ] for the sequence between times t = a and t = T . That is, X[a:T ] =
(Xa, Xa+1, · · · , XT ). The set of all such paths is the path space, denoted P. If
it is important to emphasize the start and end times, we write P[a:T ]. The state
at time t is the value of the path X[0:T ] at time t.

There is a minimal probability space and filtration for the stochastic process
Xt up to time T . The probability space Ω is the path space P[0:T ]. An element
ω ∈ Ω is a path X[0:T ] ∈ P[0:T ]. The state Xt is a function of the path in the
obvious but possibly confusing way: Xt

(
X[0:T ]

)
= Xt. The filtration is the one

in which Ft is generated by X0, . . . , Xt. At time t, we know the values Xs for
s ≤ t but not the future states Xt+1, etc. If you are only interested in the process
Xt it probably is wise to work with this minimal space and filtration. But
other situations arise. For example, Ω might describe two stochastic processes
in two state spaces Xt ∈ S and Yt ∈ S ′. Or Ω might describe a stochastic
process depending on a random and unknown parameter so that even after the
whole path X[0:T ] is known, the parameter still has some uncertainty. This is

1These three terms mean the same thing here. In more sophisticated settings, continuous
time and state space, their meanings may differ from each other.
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Night Creatures, 1965
Lee Krasner (American, 1908–1984)
Acrylic on paper

30 x 42 1/2 in. (76.2 x 108 cm)
Gift of Robert and Sarah W. Miller, in honor of Lee Krasner, 1995 (1995.595)
© 2010 The Pollock-Krasner Foundation / Artists Rights Society (ARS), New York

Not on view   Last Updated June 17, 2011

Copyright © 2000–2010 The Metropolitan Museum of Art. All rights reserved.

Heilbrunn Timeline of Art History | The Metropolitan Museum ... http://www.metmuseum.org/toah/works-of-art/1995.595

1 of 1 6/24/11 9:03 AM

Figure 2.1: An abstract painting, NightCreatures by Lee Krasner. This paint-
ing was made at about the same time the abstract definitions of filtration and
stochastic process were given.

a Bayesian model. Finally, it is conceivable that at time t you already know
Xt+1. If Ft is generated by X[0:t+1], then Xt is measurable in Ft.

A one dimensional random walk illustrates these definitions. The state space
is the positive and negative integers: S = Z. An outcome ω ∈ Ω is a sequence
of integers.

The writer Carl Jung reports a story that fits with this view of dynamics.
That view (supposedly held by a tribe somewhere in east Africa) compares a
person moving through time to a person riding backwards on the back of a cart.
The future is that part of the landscape in front of the cart but behind the
rider’s back that she cannot see. As the cart rolls forward, more of the world
comes into view. A person going through life is the same. What is behind the
cart is the part she can see. This is the past. She cannot see the future. In the
same way, you can think of the path X[0:T ] as given from the beginning, but
you learn about it one step at a time.

2.2 Markov chains

A Markov chain is a probability distribution P , on a path space Ω = P[0:T ],
that has the Markov property. Informally, P has the Markov property if the
present is all the information about the past that is relevant for predicting the
future. To say this mathematically, suppose x[0:T ] = (x0, . . . , xT ) is a fixed path
of length T . Let t ≤ T be some earlier time and consider the initial part of the
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path x[0:t] = (x0, . . . , xt). If P satisfies the Markov property, then

Pr
(
Xt+1 = xt+1 | X[0:t] = x[0:t]

)
= Pr (Xt+1 = xt+1 | Xt = xt) . (2.1)

We say that P has the Markov property if this is true for every path x[0:T ] ∈
P[0:T ] and every t with 0 ≤ t ≤ T .

A Markov chain is stationary if the transition probabilities

Pxy = Pr (Xt+1 = y | Xt = x) (2.2)

are independent of t. One usually assumes a Markov chain is stationary unless
someone explicitly says otherwise. The order in (2.2) is important: Pxy is the
probability of an x→ y transition, not a y → x transition.

To appreciate the difference between Markovian and non-Markovian, con-
sider first a simple linear process with state space S = R (the state at time t is
a real number). This state space is not discrete, but it will illustrate the ideas.
Suppose that X0 = 0 and that for t > 0,

Xt+1 = aXt + bZt , (2.3)

where the Zt ∼ N (0, 1) are independent standard normal random variables.
Linear Gaussian models like this are common in time series modeling. If Xt = xt
is known, then the remaining uncertainty in Xt+1 comes from bZt, which has
mean zero and variance b2. Therefore both sides of (2.1) are given by the same
expression

Xt+t ∼ N (axt, b2) .

Knowing the value of Xt−1 does not help us forecast Xt+1 if Xt is known.
Contrast this with a more general linear model

Yt+1 = a0Yt + a1Yt−1 + bZt . (2.4)

In this case, the conditional distribution of Yt+1 is different depending on
whether we know only Yt or both Yt and Yt−1. If we define the “state” at
time t to be all the information about the past that is helpful for forecasting
the future, this would be2 Xt = (Yt, Yt−1)′. Now the state space is S = R2 for
the two components of Xt. The recurrence relation (2.4) may be reformulated
as (

Yt+1

Yt

)
=
(
a0 a1

1 0

)(
Yt
Yt−1

)
+
(
b
0

)
Zt .

This is the same as the matrix equation

Xt+1 = AXt + BZt , (2.5)

where

A =
(
a0 a1

1 0

)
, B =

(
b
0

)
.

2We write (u, v)′ for the column vector with components u and v. It is convenient to use
column vectors when we are about to multiply by a matrix. Do not be confused by the conflict
of notation – the superscript ′ is for “transpose” while the subscript t is for “time”.
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This example illustrates a general point of view. You formulate a general random
process as a Markov chain by enlarging the state space to include everything
about the past that matters for predicting the future.

2.3 Transition probabilities

A Markov chain is largely described by the probabilities on the right side of
(2.1). Suppose the state space if finite: S = {s1, . . . , sn}. Then the right side
of (2.1) consists of the n2 numbers3

pij = Pr (si → sj) = Pr (Xt+1 = sj | Xt = si) . (2.6)

We often “abuse notation” by conflating i with si and writing, for example, pij =
Pr(i → j) instead of the slightly more correct (2.6). The pij are the transition
probabilities corresponding to the Markov chain. The transition matrix, P , is
the n× n matrix whose (i, j) entry is pij . The transition matrix may be called
the generator of the Markov chain.

The transition matrix, together with the starting probabilities

u0,i = Pr (X0 = i) , (2.7)

determines the probability of any path x[0:T ] ∈ P[0:T ]. It is just (2.6), the
Markov property, and Bayes’ rule. For example,

Pr
(
x[0:1]

)
= Pr (X0 = x0 and X1 = x1)
= Pr (X0 = x0) · Pr (X1 = x1 | X0 = x0)
= u0,x0px0x1 .

You have to use the Markov property to get the formula for two or more tran-
sitions. For example:

Pr
(
x[0:2]

)
= Pr (X0 = x0 and X1 = x1 and X2 = x2)
= Pr ( (X0 = x0 and X1 = x1) and X2 = x2)
= Pr (X0 = x0 and X1 = x1) · Pr (X2 = x2 | X0 = x0 and X1 = x1)
= Pr (X0 = x0 and X1 = x1) · Pr (X2 = x2 | X1 = x1)
= u0,x0px0x1px1x2 .

Continuing in this way, the general formula clearly involves the starting proba-
bilities and the product of the transition probabilities:

Pr
(
x[0:T ]

)
= u0,x0

T−1∏
t=0

pxtxt+1 . (2.8)

3The letter P is overworked here. To reduce confusion I write generic probabilities as Pr (·)
leaving P to be a transition matrix.
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This is how the overall probability distribution on P[0:T ] is determined by the
starting probabilities and the transition matrix.

The transition matrix has two simple mathematical properties. First, all the
elements are non-negative: pij ≥ 0 for all i and j. Second,

n∑
j=1

pij =
∑
s∈S

Pr (si → s) = 1 . (2.9)

The sum is equal to one because it is over all the states that si possibly could
transition to. Of course, the term corresponding to no transition, si → si, must
be included in the sum. The sum in (2.9) is over all the elements in row i of
P . If P is a transition matrix of a Markov chain, its elements are non-negative
and all its row sums are equal to one. A square matrix with these properties is
a stochastic matrix. The formula (2.8) shows that any stochastic matrix defines
a Markov chain.

Matrices are meant to be multiplied, a statement that applies particularly to
the transition matrix of a Markov chain. Let pkij be the elements of P k. These
have the probabilistic interpretation

pkij = Pr (Xt+k = j | Xt = i) = Pr (i→ j in k steps ) . (2.10)

We start by proving this for the case of k = 2 steps. Conditional on Xt = i, the
i→ j transition event Aj = {X2 = j} is partitioned into n events depending on
the intermediate state, l: Blj = {Xt+1 = l and Xt+2 = j}. Therefore

Pr (Xt+2 = j | Xt = i) =
n∑
l=1

Pr (Xt+1 = l and Xt+2 = j | Xt = i)

=
n∑
l=1

Pr (Xt+1 = l | Xt = i) Pr (Xt+2 = j | Xt+1 = l)

=
n∑
l=1

pilplj

You recognize the last line as the (i, j) entry of P 2. Continuing like this you
can see that

Pr (i→ j in three steps ) =
n∑
l=1

Pr (i→ l in two steps ) · Pr (l→ j in one step )

=
n∑
l=1

p2
il · plj = p3

ij .

The formula for larger k follows by induction.
Urn processes are a family of simple Markov chains used as examples. The

simplest urn process involves a single urn (container) with m balls in it. The
balls are either red or blue but are otherwise indistinguishable. At each stage,
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you choose a ball at random (all balls equally likely to be chosen) from the urn
and replace it with a new ball that has probability p to be blue and probability
1−p to be red. All choices are independent. The state at time t depends on the
number of blue balls, which we call x. The size of the state space is n = m+ 1
corresponding to the possible states x = 0, 1, . . . ,m.

Exercise 1 asks you to calculate the transition matrix elements pij . Most of
the pij are zero since only transitions i→ i− 1, i→ i and i→ i+ 1 have non-
zero probability. The matrix P is tridiagonal because the non-zeros are on the
diagonal (pii, the subdiagonal (pi,i−1), and the superdiagonal (pi,i+1). Higher
powers of P have more non-zeros. For example, p2

i,i+2 > 0 because it is possible
to add two blue balls in two steps. You can check that pmij > 0 for all i and j
because it is possible to go from any number of blue balls to any other in m
steps. Note however that some of the probabilities may be quite small. It may
be extremely unlikely, for example, to go from i = 0 blue balls to i = m by m,
which requires m successive choices to add a blue ball.

A simpler example for calculation is simple random walk. In this process, Xt

is any integer, positive or negative: S = Z. At each step, the walker goes to the
left with probability α, stays in place with probability β, and goes to the right
with probability γ. As with the urn process, the walker can go at most one unit
in one time step, so α + β + γ = 1. The parameters defining the random walk
are determined by the one step drift and the one step variance. Both of these
depend on the step at time t, which is ∆Xt = Xt+1 −Xt. The one step drift is
just the expected value of the step:

a = E [∆Xt] . (2.11)

The one step variance is the variance of the step

b2 = var (∆Xt) = E
[
∆X2

t

]
− E [∆Xt]

2
. (2.12)

The notation a, b, and ∆Xt will be used later in discussing diffusions and
stochastic differential equations. The random walk is “simple” in that the statis-
tics of ∆Xt do not depend on t (a given for time homogeneous Markov chains)
or on Xt.

2.4 Dynamics of probabilities

The transition matrix describes how the probabilities of states change in time.
Let ui,t = Pr (Xt = i). There is a simple formula for the ui,t+1 in terms of the
ui,t and the transition probabilities.

ui,t+1 = Pr (Xt+1 = i)

=
n∑
j=1

Pr (Xt = j) · Pr (Xt+1 = i | Xt = j)

ui,t+1 =
n∑
j=1

uj,tpji , (2.13)
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where n = |S| is the size of the state space. This is the forward equation for
the evolution of the probabilities ui,t. It also is called theKolmogorov forward
equation or the Chapman Kolmogorov equation. It is called “forward” because it
carries the probabilities forward through time. We will come to the “backward”
equation soon.

The forward equation is conveniently expressed in matrix/vector notation.
The ui,t form the components of a row vector ut = (u1,t, . . . , un,t). The equations
(2.13) are equivalent to the matrix equation

ut+1 = utP . (2.14)

The right side of (2.14) makes sense as the product of a 1 × n matrix (i.e. a
row vector) with the n × n transition marix. According to the rules of matrix
multiplication, the result is another 1× n vector. It may take time to get used
to putting the vector on the left of the matrix, but that is what people have
come to do in this situation.

If you use two step transition probabilities, the argument that led to (2.13)
gives

ui,t+2 =
n∑
j=1

uj,t · p2
ji .

In matrix form, this is ut+2 = utP
2. This is consistent with (2.14), as

ut+2 = ut+1P = (utP )P = ut (PP ) = utP
2 .

The same applies for k ≥ 2 step transition probabilities:

ut+k = utP
k . (2.15)

Indeed, the argument given for (2.13) is essentially the same as the argument
for (2.10) above.

2.5 The value function

A value function is a kind of conditional expectation related to a Markov chain.
Value functions are important for many reasons. One is that many important
quantities of interest can be formulated as value functions. Another is that
value functions satisfy recurrence relations that make them easy to calculate, if
the state space is not too large.

The simplest value function is defined as follows. Suppose Xt is the state
at time t of a Markov chain with transition matrix P . Let V (x) be a payout
function, which at this point is any real valued function of x ∈ S. Define f(x, t)
as the expected payout at time T starting at state x at time t ≤ T :

f(x, t) = E [V (XT ) | Xt = x] . (2.16)

Consider, for example, simple random walk with V (x) = x. Then f(x, t) =
x+ a(T − t) because the one step drift is a and T − t is the number of steps.
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The backward equation is a relation that determines the numbers f(x, t) from
the f(x, t+ 1). The Markov property also plays a role because

E [V (XT ) | Xt = x and Xt+1 = y] = E [V (XT ) | Xt+1 = y] = f(y, t+ 1) .

Then the tower property from Chapter 1 gives:

f(x, t) = E [V (XT ) | Xt = x]

=
∑
y∈S

E [V (XT ) | Xt = x and Xt+1 = y] · Pr (Xt+1 = y | Xt = x)

=
∑
y∈S

E [V (XT ) | Xt+1 = y] · Pr (Xt+1 = y | Xt = x)

f(x, t) =
∑
y∈S

pxy · f(y, t+ 1) . (2.17)

As for the forward equation, (2.17) may be written in matrix/vector nota-
tion. The vector this time is the n component column vector ft = (f(1, t), . . . , f(n, t))′.
The matrix form of (2.17) is

ft = Pft+1 . (2.18)

This determines the ft for all t ≤ T , given the extra obvious final condition

fT = V , (2.19)

where V is the column vector Vj = V (j), which is the known values

f(j, T ) = E [V (XT ) | XT = j] = V (j) .

The value function/backward equation method is very useful tool. Suppose,
for example, a Markov chain Xt is known to be in state x0 at time t − 0 and
you just want E[V (XT )]. One way to get this number, sometimes the only
practical way, is to calculate all the other intermediate quantities f(j, t). You
would compute the whole value function to get the single desired number.

As an example, consider a simple random walk on a finite state space S =
{1, . . . , n}. Suppose that the for i 6= 1 and i 6= n the transition probabilities
are the usual pii = β, pi,i−1 = α, pi,i+1 = γ, and pij = 0 otherwise. Suppose
that on the ends, transitions out of S are just not taken. That means that
p12 = Pr(1→ 2) = γ and p11 = Pr(1→ 1) = α + β. Similarly, pn,n−1 = α and
pnn = β + γ. The transition matrix is

P =



α+ β γ 0 · · · 0

α β γ 0
...

0 α
. . . . . . 0

...
... 0

. . . . . . γ 0
α β γ

0 · · · 0 α β + γ


.
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Each of the row sums of this matrix is equal to one because α + β + γ = 1,
including the top and bottom rows. The backward equation in matrix form is4



f(1, t)
f(2, t)

...

f(n, t)


=



α+ β γ 0 · · · 0

α β γ 0
...

0 α
. . . . . . 0

...
... 0

. . . . . . γ 0
α β γ

0 · · · 0 α β + γ





f(1, t+ 1)
f(2, t+ 1)

...

f(n, t+ 1)


.

In components, these equations are

f(1, t) = (α+ β)f(1, t+ 1) + γf(2, t+ 1)
f(2, t) = αf(1, t+ 1) + βf(2, t+ 1) + γf(3, t+ 1)

...
f(i, t) = αf(i− 1, t+ 1) + βf(i, t+ 1) + γf(i+ 1, t+ 1)

...
f(n, t) = αf(n− 1, t+ 1) + (β + γ)f(n, t+ 1) .


(2.20)

These equations give the value function at time t from the value function at
time t+ 1.

There are not many cases where the value function can be evaluated ex-
plicitly. You can find some in the exercises. More commonly, one would use
a computer. The algorithm starts with f(i, T ) = V (i) and then does matrix
vector multiplies to produce successively the values f(i, T −1), then f(i, T −2),
and so on down to f(i, 0). Of course, you need several values at time t + 1 to
compute values at time t. If T is not small, you probably need all the values
f(i, T ) to get any of the numbers f(i, 0).

Unfortunately, there are many practical Markov chains where the state space
is so large that it is impractical to compute and store a value function. As an
example, consider a d dimensional simple random walk. In this process, the
state consists of state consists of d integers: X = (X1, . . . , Xd), with each
Xk ∈ {1, . . . , l}. Mathematically, we write X ∈ S = {1, . . . , l}d. The size of the
state space is n = |S| = ld. Suppose, for example, that l = 10 and d = 30. Of
the computer uses one word (= 44 bytes) per number f(x, t) and we have only
one t value, the number of words is 1030 = 1021 Giga-words. No computer now
being planned has anything like this much memory or the processing power to
compute that many numbers in a practical length of time. On the other hand,
the code in Figure 2.2 shows that the system is easy to simulate.

4Maybe a LaTeX wizzard can figure out how to make the vertical spacing in the matrix
and the vectors the same.
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import java.util.Random; // Put this at the top of the file before

// the executable code.

// Put this at the top of the code, execute it only once.

Random rand; // Declare the symbol "rand" to be a random

// number generator.

rand = new Random(); // Initialize this random number generator

double U; // A double precision variable, to be random.

// Variables for the multi dimensional random walk simulation

int d; // The dimension of the random walk.

int l; // The number of positions in each direction

double alpha; // The parameters for the random walk ...

double beta; // ... They must be positive ...

double gamma; // ... and add up to one.

int[] X; // The state of the system at time t

X = new int[d]; // Allocate memory for d integers

// Code for setup etc. .....

// Take a step in the multi-dimensional random walk.

for ( int k = 0; k < d; k++ ) { // Loop over the coordinates

U = rand.nextDouble(); // Draw a uniform U for this step

if ( U < alpha ) { // With probability alpha . . .

X[k]--; // Move to the left in the i direction

if ( X[k] = 0 ) { // Except that moves outside the ...

X[k] = 1; // ... allowed range are rejected

}

}

if ( U > 1.- gamma ) { // With probability gamma . . .

X[k]++; // Move to the right in the i direction

if ( X[k] > d ) { // Except that moves outside the ...

X[k] = d; // ... allowed range are rejected

} // If alpha < U < 1-gamma, do not move.

} // ... This event has probability beta

} // Done with this time step

Figure 2.2: How to take one step of a multi-dimensional random walk. This
code could take a million time steps per second with l = 10 and d = 30, while
computing and storing the value function would be impossible.
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2.6 Continuous time Markov chains

Many stochastic dynamical systems are modeled as taking place in continuous
time rather than discrete time. In this case the time variable t is continuous,
taking values in R. Rather than speaking about transition probabilities, we
talk about transition rates. In a discrete space, rij = rate(i→ j) is defined, if
i 6= j, by

rij dt = Pr (Xt+dt = j | Xt = i) . (2.21)

The backward and forward equations (2.18) and (2.14) are replaced by differ-
ential equations derived below. The matrix powers above are replaced by the
matrix exponential.

We start with the single transition process that consists of a single exponen-
tial random variable. By definition, T > 0 is an exponential random variable
whose rate constant is λ if the probability density of T is u(t) = λe−λt (and
u(t) = 0 for t < 0). A simple calculation shows that such a transition is mem-
oryless in the sense that the probability of having to wait a time t does not
depend on how long you have waited already:

Pr(T > t0 + t | T > t0) = e−λt .

Now replace t with a small time dt and apply ordinary calculus to e−λ dt and
you get

Pr(t0 < T < t0 + t | T > t0) = λ dt .

This makes λ a transition rate in the sense of (2.21).
The Poisson process is the stochastic process that counts how many ex-

ponential times have happened within a given time t. Suppose T1, T2, etc. are
independent exponential random variables with common rate constant λ. These
are the inter-arrival times, also called waiting times between events. The time
of event k is T1 + · · · + Tk. The counting process, N(t) records the number of
arrivals up to time t

N(t) = k if T1 + · · ·+ Tk−1 < t and T1 + · · ·+ Tk−1 > t. (2.22)

The arrival rate is λ in the sense that

Pr( arrival in (t, t+ dt) ) = Pr(N(t+ dt) > N(t)) = λdt .

This is a Markov process because the inter-arrival times are independent. The
events {arrival in (t, t+ dt)} are independent of each other.

2.7 Exercises

1. Find formulas for the three non-zero probabilities in row i of the transition
matrix for the simple urn process. For example, to have an i → i + 1
transition, an addition of a blue ball, you first have to select a red ball
to remove and then choose to replace it with a blue ball. The probability
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of choosing red is (m − i)/m, which is the fraction of balls that are red.
The probability of replacing it with blue is just p. This gives pi,i+1 =
p(m − i)/m. Note that this is zero if i = m; if all the balls already are
blue, the number of blue balls cannot increase.

2. Find formulas for the random walk one step drift (2.11) and variance (2.12)
in terms of α, β, and γ. Show, conversely, how to determine α, β, and γ
to achieve a desired one step drift and variance. What values of a and b
may be achieved by simple random walks?

3. Describe the “matrix” P that corresponds to simple random walk. More
precisely,

(a) what are the diagonals pii, the sub-diagonals pi,i−1, and the super-
diagonals pi,i+1, and the other pij?

(b) Show that pkij = 0 if j > i+ k and that pki,i+k = γk.

(c) Show that next entries are given by pki,i+k−1 = (k − 1)βγk−1. Hint:
Describe all the paths that go from i to i + k − 1, figure out their
probability, and how many there are.

(d) Verify the formula from part (c) by induction on k using the result of
part (b) and the recurrence relation (2.14). Hint: in terms of matrix
elements, the recurrence relation has the form pk+1

ij = ∗pki,j−1 + ∗ ∗
pkij + ∗ ∗ ∗pki,j+1. Figure it out completely then use it.

4. This exercise gives several approaches to the value function for V (x) = x2

in simple random walk.

(a) Express the backward equation

(b) Assume that the solution has the form f(x, t) = A(t)x2+B(t)x+C(t).
This is the ansatz method we will use later to find solutions of many
partial differential equations. Find a formula for A(t) in terms of
A(t + 1), and use it (together with A(T ) = 1) to give a formula for
A(t) for t ≤ T .
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This chapter describes together some general background about measures
and limits of measures. It also describes Gaussian and Brownian motion mea-
sures and the limits that produce them. For Gaussians, this is the classical
central limit theorem. For Brownian motion, this is the more recent (1950’s)
theorem about the convergence of random walk to Brownian motion.

The rigorous mathematical treatment of these limits is technical, but most
people are able to work with the limits confidently without mastering the proofs
in detail. This is like the way most people use ordinary calculus. The understand
that limits are behind the definitions of derivative and integral but may not have
studied the mathematical theory of these limits in detail.

3.1 Central limit theorem

The central limit theorem gives an approximation for the distribution of sums
of large numbers of random variables. Suppose Y is a random variable and
Yk is a sequence of independent samples having the same distribution as Y .
We describe this by saying that Yk ∼ Y are i.i.d. (independent and identically
distributed). Let µ = E[Y ] and σ2 = var(Y ). We are interested in the sums
Sn = Y1 + · · ·+ Yn.

The simplest description is

Sn ≈ nµ . (3.1)

This is the law of large numbers, which gives an approximate value for the sum
that is not random. For example, suppose that random variables Ak are i.i.d.
exponentials with mean E[Ak] = µ = 1/λ, where λ is the rate constant. In the
previous chapter we interpreted the Ak as the inter-arrival times of a Poisson
process. The nth event happens at time Tn = A1 + · · · + An. The law of large
numbers says that if n is large, then Tn ≈ n/λ. The average rate of arrivals
during that time is the number of arrivals divided by the time, which is n/Tn.
For large n, this is approximately n/(n/λ) = λ.

One aspect of the law of large numbers is that the behavior of Sn for large
n does not depend much on the distribution of the Yk. It depends only on the
mean. At this level of precision, Sn does not even depend on the variance of
the Yk. This is one of the things that make the limits of stochastic calculus so
useful.

The value of Sn is not known exactly, even if it is known approximately. The
first issue is scaling. The fluctuation is Sn − nµ? How big is this likely to be
when n is large? The answer comes from finding something you can calculate,
in this case the variance

E
[
(Sn − nµ)2

]
= var(Sn) = n var(Y ) = nσ2 .

Since typical values of (Sn − nµ)2 are on the order of n, we may expect that
typical values of Sn − nµ are on the order of n1/2. We put this hypothesis into
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Figure 3.1: Four sample paths of Xn from (3.2). The Yk are exponential random
variables with rate one, which gives them probability density f(y) = e−y for
y > 0. These trajectories do not seem to have limits or approach each other
as n → ∞, at least not up to n = 106. A later chapter will explain that these
paths are well approximated by an Ornstein Uhlenbeck process.

mathematical form with a scaling ansatz of the form

Sn − nµ = n1/2Xn . (3.2)

You might view this just as the definition of Xn. But if the scaling is done
right, the probability distribution of Xn should approach a limit as n → ∞.
The central limit theorem states that this limiting distribution exists and is
Gaussian. As with the law of large numbers, the central limit theorem gives a
limit that does not depend much on the distribution of Y , only its variance.

It is important to understand what convergence in distribution does and
does not say about Xn. It does not say, for example, that the limit limn→∞Xn

exists. Indeed, figure 3.1 shows that the limit probably does not exist. What is
supposed to converge is the probability distribution of Xn rather than Xn itself.

But there also are different senses of convergence of a probability distribu-
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Figure 3.2: The probability density functions for Xn defined by (3.2) for various
values of n. The Yk are i.i.d standard exponentials. It is not clear at first from
the figure that each of the curves has the same integral.

tion. The simplest would be convergence of the probability densities. Let un(x)
be the probability density of Xn. Figure 3.2 shows the un(x) converging to a
Gaussian density as n → ∞. But there are random variables that do not have
probability densities in this sense. For example, suppose Y = ±1 with proba-
bility 1

2 for each possibility. Then the probability “density” for Xn is equal to
zero for all x except for numbers of the form integer/

√
n. These “densities” do

not converge in the sense of figure 3.2.
The basic central limit theorem is about convergence in distribution, which

means that, for suitable test functions F ,

E [F (Xn)] → E [F (X)] as n→∞. (3.3)

If F is continuous, this can be true even when Xn is a sequence of random vari-
ables. Suppose xn,k is a list of the possible values of Xn and un,k = Pr(Xn,k =
xn,k. In the specific example above, xn,k = k/

√
n. The spacing between these

points, ∆x = xn,k+1 − xn,k = n−1/2, goes to zero as n → ∞. Therefore, the
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limit (3.3) is

lim
n→∞

∞∑
k=−∞

F (k/
√
n)uk,n →

∫ ∞
−∞

F (x)u(x) dx .

This is something like the convergence of Riemann sums to an integral.
The formula (3.3) suggests a strategy for proving the central limit theorem

or other limit theorems in probability. The strategy is to find specific functions
F for which you can calculate the limit directly. If you can calculate the limit,
then you know

∫
F (x)u(x)dx, which is a piece of information about u. One

useful family of test functions is powers of x. This tells us moments of u. For a
Gaussian, u ∼ N (0, σ2), a calculation shows that the even moments are given
by (the sequence is 3σ4, 15σ6, 105σ8, etc.)

E
[
X2p

]
= σ2p(2p− 1)(2p− 3) · · · (3) ,

while the odd moments all are zero. If E
[
Y 2p

]
<∞, it is not so hard to show

that E
[
X2p
n

]
has the same limits as n→∞. Another convenient family of test

functions is F (x) = eiξx. These have (the last step uses the independence of the
random variables Wk = eiξYk/

√
n and the fact that Yk ∼ Y for each k.)

E [F (Xn)] = E

[
exp

(
iξ

1√
n

∑
k

Yk

)]

= E

[
exp

(∑
k

{
iξYk√
n

})]

= E

[∏
k

eiξYk/
√
n

]
=

(
E
[
eiξY/

√
n
])n

The exponent is small when n is large and we have the approximation eε ≈
1 + ε+ 1

2ε
2, which gives

E
[
eiξY/

√
n
]
≈ 1− σ2ξ

n
.

This implies that

E
[
eiξXn

]
→ e−ξ

2/2σ2
as n→∞,

which is the correct value for X ∼ N (0, σ2).
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