Stochastic Calculus, Courant Institute, Fall 2011

http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2011/index.html

Always check the class bloomed on the blackboard site from home.nyu.edu (click on academics, then on Derivative Securities) before doing any work on the assignment.

Assignment 7, due December 5

Corrections: (none yet)

- 1. Show that the discussion of the existence and value of quadratic variation holds even when $G)t \neq 0$. The notes claim this but give no details.
 - (a) Show (somewhat informally in the style of the notes) that we still have

$$\sum_{k,j < k} E[R_j R_k] = O(\Delta t) .$$

Although $E[R_k \mid \mathcal{F}_{t_k}] \neq 0$, you can say approximately what it's value is and use that to evaluate (approximately) the sum over k above. In the overall argument, use the fact that

$$E[R_j R_k \mid \mathcal{F}_{t_k}] = R_j E[R_k \mid \mathcal{F}_{t_k}] ,$$

if j < k.

(b) Figure out the power of Δt in the best bound for

$$E\left[\left\{\left(X_{t_{k+1}}-X_{t_k}\right)^2-F_{t_k}^2\Delta t\right\}^2\right]\ .$$

Is it different when $G \neq 0$. Does it invalidate the discussion in the notes?

2. Suppose S_t is a geometric Brownian motion, which means that

$$dS_t = \mu S_t dt + \sigma S_t dW_t ,$$

for some constants μ and σ .

- (a) Let the expected value of S_t be M_t . Show that $M_t = e^{\mu t} M_0$ by expressing $dE[M_t]$ in terms of M_t . Of course it is possible to do this using the well known formula $S_t = S_0 e^{\cdots}$, but please don't.
- (b) Let N_t be $N_t = E[S_t^2]$. Find a formula for N_t in terms of N_0 by calculating $dE[S^2]$ using the Ito lemma for general diffusions. Please don't use $S_t = S_0 e^{\cdots}$.
- (c) Find a formula for

$$Y_T = \int_0^T S_t dS_t$$

in terms of S_T and a Riemann integral. You can get the formula for Y_T by seeing what it takes to get $dY_t = S_t dS_t$.

- (d) You can get a formula for $E[Y_T]$ by integrating $E[S_t dS_t]$ and using part (a). You can get a different formula using the answers to parts (b) and (c). Show that these agree.
- 3. Suppose S_t is a geometric Brownian motion and $X_t = u(S_t, t)$ that satisfies

$$\frac{dX_t}{X_t} = 2 \frac{dS_t}{S_t} .$$

What could the function u(s,t) look like?

- 4. This problem addresses a frequent misunderstanding that even a math professor may have been subject to at one time.
 - (a) Suppose that X_t and Y_t are two diffusions defined on the same "space" with the same filtration. Show that $X_t + Y_t$ is a diffusion. (This is very easy.)
 - (b) Suppose that X_t and Y_t are independent geometric Brownian motions with $\mu_X \neq \mu_Y$ and $\sigma_X \neq \sigma_Y$. Is $Z_t = X_t + Y_t$ a Markov process?