Stochastic Calculus, Courant Institute, Fall 2011
http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2011/index.html
Always check the class bboard on the blackboard site from home.nyu.edu (click on academics, then on Derivative Securities) before doing any work on the assignment.

Assignment 3, due October 10

Corrections: (none yet)

1. An important part of the central limit theorem is that the distribution of $S_{n}=Y_{n}+\cdots+Y_{n}$ depends (to leading order in n) only on the mean and variance of Y (As usual, the Y_{k} are independent and have the same distribution as Y.). This exercise verifies this phenomenon for the fourth moment. Let $X_{n}=n^{-1 / 2}\left(S_{n}-n \mu\right)$ be the scaled deviation of S_{n} from its mean (Here $\mu=E[Y]$.). Define $\sigma^{2}=\operatorname{var}(Y)=E\left[(Y-\mu)^{2}\right]$, and $m_{4}=E\left[(Y-\mu)^{4}\right]$. Assume $m_{4}<\infty$ and show that

$$
\begin{equation*}
E\left[X_{n}^{4}\right]=3 \sigma^{4}+O\left(\frac{1}{n}\right) \quad, \quad \text { as } n \rightarrow \infty \tag{1}
\end{equation*}
$$

Hint: you can assume without loss of generality that $\mu=0$ (why). Doing so gives

$$
X_{n}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} Y_{j}=\frac{1}{\sqrt{n}} \sum_{k=1}^{n} Y_{k}
$$

so

$$
E\left[X_{n}^{2}\right]=\frac{1}{n} \sum_{j=1}^{n} \sum_{k=1}^{n} E\left[Y_{j} Y_{k}\right]
$$

Only the diagonal expectations, the ones with $j=k$ are different from zero. With the fourth moment, $E\left[Y_{i} Y_{j} Y_{k} Y_{l}\right] \neq 0$ only for a small subset of the possible values of i, j, k, l. Most of those expectations are σ^{4}.
For the non-math majors, $a_{n}=O(1 / n)$ means that there is a number C so that $\left|a_{n}\right| \leq C / n$ for all n. It is the same to say that there is a C and an N_{0} so that $\left|a_{n}\right| \leq C / n$ whenever $n>N_{0}$ (non-math majors, think this through.). These big O error bounds are useful because they are easy to manipulate and verify. For example, if $a_{n}=O(1 / n)$ and $b_{n}=O(1 / n)$, then $a_{n}+b_{n}=O(1 / n)$, just take the $C_{a+b}=C_{a}+C_{b}$. It is easy to verify facts like $\left(1+n^{2}\right)^{-1 / 2}=O(1 / n)$. If it looks proportional to Const/ n as $n \rightarrow \infty$, then it is $O(1 / n)$.
2. The probability distribution of a Gaussian random variable is determined by its mean and variance. In particular, all higher moments are determined by the mean and variance.
(a) Show that if X is a one dimensional Gaussian with $E[X]=0$ and $E\left[X^{2}\right]=\sigma^{2}$, then $E\left[X^{4}\right]=3 \sigma^{4}$. Hint: First write $X=\sigma Z$ where $Z \sim \mathcal{N}(0,1)$. Then show that the question reduces to showing $E\left[Z^{4}\right]=3$ (This is an example of non-dimensionalization.). Finally, integrate by parts in the z integral, noting that $z^{4}=z^{3} z$ and $z e^{-z^{2} / 2}=-\partial_{z} e^{-z^{2} / 2}$.
(b) Assume that $X \sim \mathcal{N}\left(0, \sigma^{2}\right)$ and find a formula for $E\left[X^{n}\right]$ in terms of σ. The formula is different for even and odd n.

